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1 Introduction

This paper describes the development of some thoughts on philosophy of
mathematics, a system of dependent type theory (for the general context
of dependent type theories, [1] is a nice reference), and a computer imple-
mentation of these ideas, in parallel. We call the logical framework that we
describe “Lestrade” and the software implementing it “the Lestrade Type In-
spector”, or, when speaking briefly, also “Lestrade” (to go with the author’s
“Holmes”): we hope that we may be forgiven.

The ideas on philosophy of mathematics aim at justification of the current
practice of classical mathematics in a manner which may seem more likely
to motivate a constructive or even finitist view. That this can be done is
in our view interesting. The philosophy is certainly adaptable to a frankly
constructive view. All infinities invoked in this scheme are in a suitable sense
merely potential: the system is Aristotelean in its fashion.

The system of dependent types is of a familiar sort motivated by the
Curry-Howard isomorphism (see [4],[13],[7]) and the implementation is recog-
nizably a variant of the system Automath of de Bruijn (for which the omnibus
reference is the useful volume [16]; a survey publication by de Bruijn is [5];
a modern implementation is Freek Wiedijk’s [8]). There are various modern
relations of Automath (source and examples of use of which are more readily
available and on a larger scale) which would be more or less distant cousins
of Lestrade, such as Coq ([3]). The recent introduction of the ability to in-
troduce rewrite rules by constructing or exhibiting terms of suitable types
to justify them, the rewrite rules then being used to justify type equations
and rewrite terms, arguably gives us not only a type checking system but a
programming language capable of acting on all types of mathematical object
and proof: in particular, it appears to implement the style of programming
with rewrite rules described by the author in [10]. Much more would need
to be done to make Lestrade an actual programming environment!

The source code for Lestrade will always be available at [12]: a recent
version is appended to this document as an appendix.
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2 A model of mathematical activity

We present a model of what we might take a mathematician to be doing.
This will be recapitulated with more concrete detail in the description of

the implementation of the syntax and semantics of the Lestrade system in
section 3. Most comparisons of Lestrade to its precursor Automath will be
deferred to section 3, though some do occur here.

Objects of mathematics in the most general sense we will refer to as
entities . The entities fall into two main species, objects and constructions.
The species are further subdivided into sorts.

Among the sorts of object that the mathematician might consider are the
sort prop of propositions, and for each proposition p, a sort (that p) which
we might say is inhabited by proofs of p. We prefer to call inhabitants of
(that p) evidence for p rather than proofs of p: to say that when we assume
p is true for the sake of argument we in fact assume that it has been proved
is to presuppose a constructive philosophy of mathematics. In any event, if
there is an inhabitant of (that p), it is definitely asserted that p is true: when
we call an item in that p evidence rather than proof, we are not implying
that it is partial evidence.

We are of course thinking of the view that mathematical proofs are them-
selves mathematical objects, which is embodied in the Curry-Howard iso-
morphism. In the usual presentation of the Curry-Howard isomorphism, the
proof of a conjunction A ∧ B is to be thought of as a pair consisting of a
proof of A and a proof of B and the proof of an implication is to be thought
of as a construction taking proofs of A to proofs of B.1 A proof of ¬A is to
be thought of as a function taking proofs of A to proofs of ⊥, the absurd. A
proof of a universally quantified sentence (∀x ∈ D : A(x)) is to be thought
of as a function taking elements x of the domain D to proofs of A(x) (note
that the type of the output will depend on the input). What we will do will
differ from this to some extent: but this is the general idea of our approach.

We are agnostic as to whether the objects the mathematician talks about
in his or her propositions and proofs are typed or untyped, so we provide
support for both approaches (and we suggest that both parts of this ma-
chinery might be useful). We provide a sort obj of untyped mathematical
objects. We provide a sort type inhabited by objects which we call “type

1It should be noted that we regard a proof as belonging to the species object rather
than the species construction (this is indicated by the use of “function” rather than “con-
struction”.
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labels”, and for each τ of sort type, a corresponding sort (in τ): we refer to
objects of this sort as objects of type τ .2.

It should be noted that though we intend the terminology to suggest that
sorts (that p) are inhabited by proofs/evidence and sorts (in τ) are inhabited
by typed mathematical objects, most of the logical framework actually treats
prop / that on the one hand and type / in on the other in exactly the
same way.3 In an actual Lestrade book the general axioms for logic on the
one hand and manipulation of types on the other are not likely to be exactly
parallel.

These are the sorts of objects that we postulate. Of course, if we postulate
additional objects of type prop or type we simultaneously postulate new sorts
of object.

In addition, we have constructions taking given objects (and construc-
tions) to new objects. In earlier versions, we have used the word “function”
instead of “construction”, but it is better to use the word function for objects
implementing or in a sense packaging constructions.

We introduce entities by two processes: postulation and definition.
The process of postulation is the local version of the introduction of ax-

ioms and primitive notions. We describe the case of postulating a construc-
tion. This amounts to postulating a method of acting on a concrete finite
list of objects and previously given constructions of given sorts to obtain a
new object of a given sort. We declare a sequence of variables, giving a sort
for each variable, and give an object sort for the output. A subtlety is that
our system of sorts admits dependent sorts: later variables in the sequence
of arguments of the construction may have sorts that depend on the values
of earlier variables in the sequence, and the sort of the output may depend
on the values of the input variables. For example, a proof that for all x of
type τ , φ(x) (where φ is a previously given construction taking a variable x
of type τ to output of type prop, the natural typing for a predicate) can be
thought of as a function4 with first argument x of sort (in τ), and output xx

2There is a tension here between the word “sort” and the word “type”: we call the
sorts of Lestrade itself “sorts”, and the special sorts which it uses to represent types of
object considered by the ideal mathematician we call “types”: an object of sort (in τ)
is an object of type τ . Of course we may slip and say type when we mean sort, and we
generally say “type” for sorts in Automath itself, as the Automath workers did.

3The rewrite feature breaks this symmetry. There is code, currently commented out,
in the source which restores the symmetry.

4We use the word “function” advisedly, to indicate that such a proof is an object (in
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of sort (that φ(x)). Note that the sort of the output depends on the value
of the first argument. Even more subtly, the universal quantifier over type
τ can be taken to be a construction with two arguments, the first being a
construction φ from τ to prop, the second being a variable x of sort (in τ),
and the output being a proof xx of sort (that φ(x)). Here we see an argu-
ment which is a construction rather than an object. Finally, the universal
quantifier over general types can be implemented as a construction taking
three arguments, a type τ of sort type, a predicate φ which is a construction
from τ to prop, and a variable x of sort (in τ), and sending this to output
a proof xx of sort (that φ(x)). In this example we see that the sort of an
input to a construction may depend on the values of earlier inputs.

The process of definition allows us to introduce new entities whose exis-
tence follows from our axioms and constructions using our primitive notions:
this is the local version of proof of theorems and introduction of defined no-
tions. Again, we describe the case of defining constructions. This is done
in an entirely familiar way: introduce a sequence of variables of appropriate
types as under the previous heading, in which the sorts of later variables
may depend on the values of earlier variables. Write out an expression for
an object in terms of these variables which is well-sorted, using constructions
already given, and compute its sort. We thereby discover a new construction
which from any sequence of objects and constructions with the appropriate
input sorts generates an object of the appropriate output sort (of course an
object sort, and possibly depending on the values of the inputs).

The next ingredient of the philosophical approach we take is a special at-
titude toward functions (the mathematical notion of function being manifest
in our notion of construction). We do not choose to regard functions as in-
finite tables determined by applying the function to every possible sequence
of inputs of the appropriate sorts. We take the approach that a function
is an actual rule or construction (necessarily speaking informally). Where
x is a natural number variable, we take seriously the idea that the variable
expression x2 + 1 determines a function. We really have “variables” in a
suitable sense in our metaphysics, as it were. We are avoiding actual infinite
totalities in our metaphysics, so we hardly want a function to be an actual
infinite table of the outputs corresponding to given inputs: we prefer to think
of it as a (presumably finite) template into which inputs can be plugged to
produce outputs. The function (λx.x2 + 1) is more like an abstraction from

which a contruction is packaged) rather than a construction itself.
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the term x2 + 1 than the infinite table {(1, 1), (2, 4), (3, 9), . . .}. This may
be enough to suggest why we use the word “construction” instead of “func-
tion”, and we return to that usage. Our attitude that constructions are in
a sense finite objects is borne out by the fact that constructions are never
introduced except as abstracted from explicit terms with variables in them
(which are finite structures): which is not to say that we identify construc-
tions with pieces of text. We are talking about metaphor here. The fact
that constructions are abstracted from expressions, which are certainly fi-
nite objects, appears to make it reasonable to suppose that a construction
is a finite object. The expression tells us how to compute the value of the
construction for any input values of appropriate types which are presented
to us: we do not need to know all the values in advance: the infinity of
values of the construction is potential, not actual. To sumarize, we take the
position that a construction is a finite object abstracted from a finite ex-
pression, with slots in it (corresponding to variables in the expression) into
which objects of the appropriate sorts can be plugged to give an output of
the appropriate sort. The same view applies to the axiomatically given con-
structions: it is just that in this case we cannot look under the hood and see
how the output is computed (and we do not support any presumption that
arbitrary constructions introduced in the future will be definable in terms of
ones previously introduced or share any properties provable of constructions
definable in terms of previously introduced constructions by some structural
induction). We now propose to take seriously the notion of a variable entity.
Our suggestion is that a variable entity is an entity in a possible world to
which we have limited access: all we know about the entity is its sort (which
may contain information about previously postulated variable entities). One
metaphorical way to think of a variable entity is that this is an entity of a
given sort which may be given to us in the future. We use this temporal
metaphor explicitly in the latest version of Lestrade by calling the possible
worlds “moves”.5

An initial version of this scheme which can be used to present the idea
concretely is that we have a sequence of moves at any given point in the
process indexed by concrete finite natural numbers 0 to i + 1 (there are
always at least two moves). Move i, which we call the last move (or in

5This nomenclature is a recent decision. In earlier material, what we call here “moves”
were called “worlds”, and what we call the “next move” was called the “current world”
and what we call the “last move” was called the “parent world”.
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some texts the current move), and all lower indexed moves, are inhabited by
objects and constructions which we currently regard as given constant things
of their various sorts. Move i + 1 we view as inhabited by variable entities,
or in terms of our metaphor, things of determinate sort which have not been
fixed yet: we call it the next move.

We can freely declare variables in move i+1 of any object or construction
sort we currently have accessible (remember that if we postulate new objects
of sort prop or type, we have thereby postulated new sorts). The declaration
of an object in move i + 1 may make more sorts available which depend on
this object: these may be used as sorts of further objects declared in move
i + 1. We regard all declarations as having been made in an order, with
any variable having been declared later than any variable on which its sort
depends. One should remember that “variables” are always entities at the
next move.

We can introduce new primitive constructions: when a sequence of vari-
ables has been postulated at move i + 1 (some of whose sorts may depend
on variables declared earlier) we may postulate a construction (a new con-
struction at move i, the last move) which will take any inputs of the given
sorts and give an output of a stated object sort (which may depend on the
input variables). We may also declare a constant object in move i of a given
fixed object sort (this can be viewed as a special case where the argument
list is empty; we are here introducing an object constant rather than an ob-
ject variable). The typical format of a postulation command is “postulate
f which takes arguments x1, . . . , xn (variables declared in move i + 1 in the
order in which they were declared (which ensures that the sort of an xi can
depend on an xj only if j < i) and is such that f(x1, . . . , xn) is of sort τ (an
object sort which may depend on the xi’s).” Any variable on which the sort
of an xi depends must appear as an xj.

We can introduce new defined constructions: any expression using pre-
viously given constructions may be taken to determine a new construction
at the last move (move i) taking as arguments a list of variables including
all variables actually appearing in the expression (and all variables on which
the sorts of variables in the argument list depend, in such a way that sorts
of later arguments depend only on earlier arguments). We can introduce
objects by definition as well. When we introduce an object by definition, we
assign it a name: so we define a new construction or object symbol. The
typical form of a definition is “define f(x1, . . . , xn) as t”, where x1, . . . , xn
is an argument list of variables just as above and t is an object term. This
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declares the symbol f as an item at move i whose input sorts are of course
the sorts of the xi’s, and whose output sort is the sort of t (which obvously
may depend on the xi’s as we expect t itself will so depend).

Finally, we observe that the system of moves is dynamic. At any point,
we may fix everything we have postulated so far and open a new move i+ 2
which becomes the next move, whereupon move i+ 1 becomes the last move
and we increment the parameter i. Or we can close move i + 1 (if i 6= 0)
and return to considering objects at move i as variable relative to objects at
moves of lower index (thus in effect decrementing the parameter i).

A subtle point is that it may not be clear that we have given ourselves
the ability to declare variables of construction sorts. But we have. One pro-
cedure for doing this is to open a new move, declare variables of appropriate
types desired as input sorts and declare a primitive construction taking this
argument list to an output of the desired output sort, then close that move.
The primitive construction declared remains as an entity at the next move,
a variable construction of the desired type. A recent update allows one-
line declarations of construction variables, since we have introduced terms
representing construction sorts; it remains interesting that we can declare
construction variables while never actually writing a construction sort term.

We have made the perhaps artificial decision that the output of a con-
struction is never a construction6: we are in effect reversing the popular
operation of “currying” as far as possible. This has a striking effect on the
language of the computer implementation, at least in the current version.
There is no need for the user ever to write a representation of a construction
other than the atomic name under which it was constructed or defined. [This
is not to say that the ability to do this may not be desirable; it has in fact
been added and is extremely useful in practice: but it is interesting that
it is eliminable]. The user’s input language originally contained no variable
binding constructions, in fact. A construction may always be defined as in
calculus when we say f(x) = x2 + 1, the name f then being provided for
the construction; it never has to be introduced as (λx.x2 + 1) (anonymously,

6In fact, we do not feel that this is arbitrary. The idea is that the objects are the
first class citizens of a Lestrade world, and constructions are only declared or defined
schematically in terms of their object values. One way of thinking of this is to think of the
constructions as “proper class” functions, though in a framework where proper class con-
structions are distinguished from set constructions with the same extension. The analogy
with sets versus proper classes is not perfect, though, since we do not allow constructions
to be outputs of constructions, but we do allow them to be inputs of constructions.
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as it were) though such notations may be generated in sort signatures by
Lestrade when the name under which a construction was introduced passes
out of scope due to the move at which it was created being closed, and the
user may now enter such λ-notations as arguments to Lestrade constructions.
A variation on this is that a term f(t1, . . . , tm) where m is less than the ar-
ity n of f will be read as [(xm+1 . . . xn) ⇒ f(t1, . . . , tm, xm+1, . . . , xn)] if the
types of the ti’s are appropriate. This only works if the argument list is
explicitly closed with parentheses. Such a term can only appear as an argu-
ment. The user may enter λ-terms as arguments. The syntax is of the exact
form [x1, . . . , xn ⇒ T ], the bound variables xi being variables declared at the
next move, separated by commas, and T being an object term. The identi-
fier => is now reserved. The form displayed by Lestrade for these terms will
have the bound variables decorated with a namespace index and will be fully
adorned with sorts for the variables. The notation for constructions sorts is
similar, taking the shape [x1, . . . , xn ⇒ τ ], where the xi’s are variables in the
next move and τ is an object sort term.

There is a comment to be made here about the relation between Lestrade
and Automath: Automath has a sublanguage PAL in which λ-terms are not
used ([16], pp. 79-88), but PAL is strictly weaker than Automath in its logical
capabilities: Lestrade has a more complex context mechanism which allows
the logical power added to Automath by adding λ-terms to be replicated,
but without actually requiring that one use λ-terms; we have now added the
ability to write anonymous λ-terms as arguments of Lestrade constructions,
but this adds convenience rather than logical power. Similar remarks apply to
the introduction of terms with variable binding which represent construction
sorts.

The system was forced to have an internal representation of anonymous
constructions, however, even before user-entered λ-terms were allowed. When-
ever it computes the sort of a construction, it produces a dependent type in
which the arguments are bound variables: a typical sort is [(x1 : τ1), . . . , (xn :
τn)⇒ τ ]: this is an expression with bound variables because the types τi may
depend on xj for j < i and τ may depend on any xi. The sort data recorded
for a defined construction has the body t of the definition as a further piece of
information (the form is [(x1 : τ1), . . . , (xn : τn)⇒ (t, τ)], where τ is the type
of t): this “sort” is in effect a λ-term. Now consider what happens when the
last move contains a defined construction and the next move is closed. Prim-
itive constructions declared in the former last move (which is now the next
move) become variable constructions. Defined constructions declared in the
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former last move remain defined, but they are now as it were defined variable
expressions. When a construction or definition is declared in a way which
uses one of these defined constructions, the name of the defined construction
must be eliminated from the information recorded at the last move, because
if we close the current next move the name of the defined construction ceases
to be available. Where the defined construction appears in applied position,
it is eliminated by expanding the definition in the obvious way. Where it
appears as an argument, it can be replaced by its sort, which is in effect
a lambda term defining it, in which the only terms denoting objects in the
same move are bound variables representing its arguments.

One must note that the implementation of this scheme is inevitably rec-
ognizably a variant of the Automath type checker. We are quite happy to
acknowledge this. Previous versions differed from the Automath type checker
in not having lambda abstraction and construction application as operations
directly available to the user: the current version does allow the user to
enter λ-terms as arguments in Lestrade expressions, and still differs from
Automath in that constructions are never defined except by schematically
declaring their values, though one-line declarations of construction variables
are now possible, since λ-terms representing construction sorts have been
introduced.

If this is taken to be vague, it is made concrete by the actual implemen-
tation. We support our claim that this scheme implements all mathematical
activity by actually presenting declarations implementing standard founda-
tional systems.

A philosophical point to be made about this scheme is that all infinities
involved in it can be viewed as potential. One is never directly considering an
actual infinity of objects and constructions at any point. One manipulates
entire sorts not by considering all the entities of that sort individually (re-
quiring that the whole sort be given at once) but by the device of generality.
One shows not how to deal with every object of a potentially infinite sort,
but how to deal with any object of this sort which may be presented to one.
We believe that this defuses any objections to impredicative reasoning. From
this standpoint it is clear that definition is not a logically trivial move: to
define a construction (or object) is to explicitly make some potential entity
actual, and since we do not suppose that all potential entities are given to
us at once, this is a nontrivial act.

It might be thought that this approach is more suited to constructive
reasoning, and indeed it can implement constructive reasoning. But classical
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reasoning is also amenable to implementation in this style.
We narrate the introduction of the general universal quantifier operation

described in our earlier example.
Initially, we have move 0 and move 1, each containing no declarations.
Declare a variable τ of sort type in move 1.
Open move 2: the last move is now move 1 and move 2 is the next move.
Declare a variable x1 of sort (in τ) at move 2.
Postulate a construction φ such that φ(x1) is of type prop. φ is introduced

as an item at move 1.
Close move 2. φ is now a variable construction taking a type τ argument

and returning a proposition (an arbitrary predicate of type τ objects).
Declare a variable x of sort (in τ).
Potulate a construction ∀ such that ∀(τ, φ, x) is a proposition. ∀ is de-

clared at move 0 (an unequivocally constant entity). This is the correct type
for the universal quantifier. You can see in the extended example in section 6
how we further postulate constructions implementing the rules for reasoning
with the universal quantifier.
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3 Formal description of the syntax and sort

checking

There is a lot of sample Lestrade input and output to examine in later sections
(and some embedded in this section). This Lestrade text is now rather old
and for example does not take much if any advantage of the ability to use
λ-terms for construction sorts and construction arguments.

3.1 Lestrade Syntax

books made up of lines: A Lestrade book (a Lestrade text is called a
book, following Automath usage) is a sequence of lines.

resolution of lines into tokens: Each line breaks up into tokens.

A token is either

1. a non-null string which is the concatenation of a single upper case
letter or null string followed by a possibly null string of lowercase
letters followed by a possibly null string of digits. One of the three
components has to be non-null. The single quote is treated as a
digit for technical reasons.

2. a string of special characters taken from

~!@#$%^&*-+=/<>|?

3. or a single character taken from

,:()[]

4. If a double quote appears in a Lestrade line, the entire remainder
of the line is taken to be a token (without the quote). This is used
by some diagnostic commands not listed here: this item is mainly
a warning not to use double quotes in Lestrade lines.7

7parsetest "<text> will parse the text as a term and display the term and its type.
parsetest2 "<text> will parse the text as a sort (object or construction). I have more
diagnostic constructions which I will probably eventually implement in the Lestrade inter-
face using this device. I preserve this footnote for the moment, but see the new commands
goal and test.
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Whitepace is ignored, except that it terminates a token. A 1 is two
tokens, where A1 is one.

command names: The first token in a line will be a command name, one
of

declare, postulate, define, rewritep, rewrited, open, close, clearcurrent

[the first line contains all the commands

that implement the logical framework]

save, foropen, forclearcurrent

[commenting and term-testing commands.]

goal, test

[commands to do with context saving]

showall, showrecent, showdec, showdecs, displayrewrites

[commands that will cause display of information]

showimplicit, hideimplicit

[turns on or off the display of implicit arguments in sorts]

compactdisplay

[turns on or off display of definitions

at moves of positive index]

readfile, readbook, readback, readkoob

[read a first file, output to a second. The filenames must be

legal Lestrade identifiers.]

load import
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[import declarations from other files already run]

comment or %, comment1 or %% (logged comments);

>> for transient comments

[comments, logged and unlogged, respectively;

comment or % is followed by a line break]

reserved tokens, identifiers: The reserved tokens are the comma, colon,
parentheses, and brackets, the string => used in the innards of λ-terms,
and the words obj, prop, type, that, and in. All other tokens are iden-
tifiers (there is no reason that the command names cannot be identi-
fiers). An identifier which appears as the next token after the command
declare, postulate, define, or rewritep should not have been pre-
viously used and will be assigned a sort if the line is well-formed and
can successfully be executed. An identifier which appears as the next
token after the command rewrited should already have been declared.
Any other identifier which appears in a line should have been declared
already and assigned a sort.

A piece of information we need is that the sort of an identifier will tell us
whether it represents an object or a construction, and if it represents a
construction the sort will tell us the arity of the construction, a positive
integer.

extended identifiers: A scheme of renaming is used to avoid name con-
flicts: an identifier is postpended with either ’ (recall that this is treated
as a digit) or $, repeating as necessary until a new identifier is obtained.
It is not permissible to declare an identifier which has more than one
character and ends with ’ or $: such identifiers are introduced only by
the renaming feature (and also by the innards of the rewriting feature).
These are referred to as extended tokens or extended identifiers.

logical commands: The only lines which contain parsed text after the ini-
tial command are those which begin with declare, postulate, and
define, and now the new commands rewritep and rewrited. The
commands goal and test also have parsed text arguments, but have
no effect other than term display.
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comment commands: comment or >> will be followed by comment text
which will be ignored (text after comment(1) or %(%) will be echoed;
that following >> is discarded) . comment1 is for non-final lines in
comments (not followed by a line break when echoed); % and %% are
alternative versions of comment, comment1.

The commands goal and test might be regarded as comment com-
mands. The goal command parses and displays an object sort: this
is used to assist readability of arguments. The test command parses
the following text as an argument and displays the argument and its
type. This can be used for commenting, and also for live development
of command lines.

display commands: The showdec command may be followed by a single
identifier whose declaration will be shown. Text following other com-
mands will be ignored.

the readfile, readback commands: readfile file1 file2 will read the
Lestrade commands in file1.lti and log to file2.lti. The filenames
need to be valid Lestrade tokens. This command should not appear in
.lti files (or in .tex files intended to be handled by Lestrade): it will
not work correctly (it is not designed to be nested). If it is given one
parameter, it reads to a scratch file. The command readback will read
the scratch file back to the source file supplied to it as a parameter (it
does make backups!). For readback to work without raising an I/O
error, make sure there is a folder called backups in the folder where
Lestrade is run. Backup versions of files updated with readback will
be found there.

the readbook, readkoob commands: readbook file1 file2 will read
the Lestrade commands in file1.tex which are contained in blocks be-
ginning with \begin{verbatim}Lestrade execution: (without any
additional spaces) and ending with \end{verbatim} and log to file2.tex,
echoing all other text. This allows executable Lestrade scripts with La-
TeX commentary to be handled both by LaTeX and by the Lestrade
interpreter. The filenames need to be valid Lestrade tokens. This com-
mand should not appear in .lti files (or in .tex files inside executable
blocks): it will not work correctly (it is not designed to be nested).8

8The form of this command was originally readfile2.
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If it is given one parameter, it reads to a scratch file. The command
readkoob will read the scratch file back to the source file supplied to it
as a parameter (it does make backups!). readkoob and readback will
not be confused, because they use different scratch files. For readkoob
to work without raising an I/O error, make sure there is a folder called
backups in the folder where Lestrade is run. Backup versions of files
updated with readkoob will be found there.

remark on pretty printing: Lestrade will pretty print both type and def-
inition information which it outputs and command lines, with inden-
tation which is attentive to information about moves and depth of
abstraction. For command lines, it may be necessary to run a file more
than once to get a sensible form, as of 7/26/2019. In command lines in
files, but not on the console, the backslash signals continuation of the
line on the next line, and the prettyprinter works on command lines by
inserting backslashes and suitable indentation.

the load and import commands: The load command or the import com-
mand will be followed by a token (the name of a Lestrade log file which
has been read by the system, it is hoped).9

toggling display of implicit arguments in sorts: showimplicit turns on
display of implicit arguments in sorts; hideimplicit turns it off again.
The command compactdisplay toggles whether to display definitions
in type data at moves other than move 0: the default is not to display
this information.

syntactical forms of the logical commands: The form of a declare line
is the keyword declare, followed by the undeclared identifier to be de-
clared (which cannot be a reserved or extended token), followed by an
object sort term. These classes of strings will be explained. Note that
there is not a colon before the object sort term as in the following
command.

The form of a postulate line is the keyword postulate, followed by
the undeclared identifier to be declared (which cannot be a reserved or

9The double quote token construction can handle file names which are not well formed
Lestrade tokens otherwise.
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extended token) followed by an argument list, followed (optionally) by
a colon10, followed by an object sort term.

The form of a define line is the keyword define, followed by the
undeclared identifier to be declared (which cannot be a reserved or
extended token), followed by an argument list, followed by a colon
(required), followed by an object term.

The form of a rewritep or rewrited command is the respective key-
word, followed by the identifier to be declared (rewritep) [in this case
not reserved or extended] or used as witnessing proof [in this case al-
ready declared] (rewrited) followed by an argument list.

object sort terms: An object sort term is either obj, or prop, or type,
or the keyword that followed by an object term, or the keyword in

followed by an object term.

construction sort terms: A construction sort term consists of an opening
bracket followed by a comma-separated list of variables declared in the
next move followed by => followed by an object sort term followed by
a closing bracket. They can only be used as final arguments of the
declare command.

object terms: An object term is either an identifier declared to be of object
type, or an identifier declared to be a construction of arity n, followed by
an argument list of length n, or an object term followed by an identifier
declared as a construction of arity n ≥ 2 followed by an argument list
of length n − 1 which cannot be enclosed in parentheses unless it is
of length 1 (this is an infix or mixfix term). An object term may
optionally be enclosed in parentheses. The precedence order assumed
is that of the old computer language APL (every infix or mixfix is of
the same precedence, except unary prefix operators, which bind more
tightly, and everything groups to the right).

The display functions will always use infix form when a construction is
of arity 2 and has first argument an object. Mixfix forms other than

10The colon in this and following commands is not there to set off a following sort term
but to terminate an argument list whose length cannot be predicted: in the postulate
command its use is optional; in the define command, where what follows is not a sort, its
use is mandatory.

18



infix are never displayed. The display functions use lots of parentheses
and commas.

argument lists: An argument list may be of length 0, in which case it is
the null string (null argument lists occur only as the third item in a
postulate or define line: the parser never finds them). An argument
list of positive length n may optionally be enclosed in parentheses un-
less it is of length greater than one and follows a mixfix operator. The
n items in it are either object terms, lone identifiers of construction
type, curried construction terms or λ-terms; individual items may op-
tionally be separated by commas, which may be necessary to avoid a
construction item from being read as a prefix, infix, or mixfix operator,
depending on its arity.

A term f(t1, . . . , tm) where m is less than the arity n of f will be read
as [(xm+1 . . . xn) ⇒ f(t1, . . . , tm, xm+1, . . . , xn)] if the types of the ti’s
are appropriate. This only works if the argument list is explicitly closed
in parentheses. Such a term can only appear as an argument.

The user may enter λ-terms as arguments. The syntax is of the exact
form [x1, . . . , xn ⇒ T ], the bound variables xi being variables declared
at the next move, separated by commas, and T being an object term.
The identifier => is now reserved. The form displayed by Lestrade for
these terms will have the bound variables decorated with a namespace
index and will be fully adorned with sorts for the variables.

serious warning about the parser: It is important to note that
if the first item in an argument list following a prefix operator is en-
closed in parentheses, one must also enclose the entire argument list in
parentheses, to avoid reading the first item as the entire argument list.

It is also important to note that all infix or mixfix operators have the
same precedence and group to the right, as in the old language APL.
Unary operators bind more tightly than infix or mixfix operators.

3.2 Lestrade Sort Declaration and Checking

All that we have revealed so far is the syntactical requirements for a line.
There are semantic requirements as well, of course, handled by the sort check-
ing functions of the prover.
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the scheme of moves: At any given point the user has a finite list of sort
declarations of identifiers which appear in the order in which they were
added to moves 0 to i + 1, where i is a parameter maintained by the
program. Any identifier declared at any move is accessible to the parser
and sort-checker. We call move i + 1 the next move and we call move
i the last move. Some moves may be assigned names other than the
default numerical name derived from their distance from move 0: moves
which do not have such names are assigned their default numerical
names.

opening a new move: The open command causes i to be incremented and
a new move i+1 to be opened with no definitions in it. [The command
open with an argument will open an existing version of move i + 1
named by that argument or create a new one.] If name conflicts occur
with identifiers already declared, the identifiers in the next move will
be extended (as described above) until new.

saving the next move: The save command will save the current state of
moves 1 to i with their current attached names and the next move
with the name supplied to it as an argument, or its current name if
no argument is supplied. The option of saving the next move with a
new name allows Lestrade to emulate aspects of the Automath context
system (though more verbosely). The next move will be renamed to
the argument of the save command if the save is successful.

closing the next move: The close command does nothing if i is 0. If
i is positive, the command discards move i + 1 and all declarations
contained in it and decrements the counter i. The close command does
not save any declaration information: saving of a move must be done
explicitly.

the clearcurrent command: The clearcurrent command has the effect
of close followed by open: it empties the next move of declarations
while not changing the index of the next move. clearcurrent is needed
as a separate command, however, because move 1 cannot be closed,
but can be cleared of declarations. clearcurrent with an argument
will empty the current version of move i + 1 and replace it with a
new one or previously saved one named by the argument, except that
if the argument is the default numerical name of the next move it
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is always cleared. The first named move that is opened in a given
session will be opened with clearcurrent (or have its name changed
to a non-default name by save). If the move to be added contains
identifiers conflicting with identifiers already declared, these identifiers
are extended, as described above, until new.

discovering saved moves: The foropen command will show what named
moves can currently be opened with open and the forclearcurrent

command will show what named moves can currently be opened with
clearcurrent. The display will just be a list of names.

purging of saved moves: When clearcurrent overwrites a nonempty saved
move with default numerical name with a blank move or when save

saves the next move with a name already in use in that context, the
overwritten saved move and all of its extensions with further moves
are deleted. As of 7/26/2019 when I am revising this, move manage-
ment has been significantly changed and some old scripts may need to
be revised. It should be noted that what identifies a saved move to
Lestrade is not its name by itself but the whole string of names of pre-
vious moves at the time it was saved (and whose state as saved moves
is updated when it is saved); different moves may have the same name
if their contexts are different without confusion.

the display commands: showall will show all declarations. showrecent

will show all declarations at the last and next moves. showdecs will
show the declarations in the last and next moves, one at a time, those
in the next move in order of declaration and the others in reverse order.
q will break out of either of the lists in showdecs. showdec takes an
identifier argument and displays its sort.

the load command: This command with argument <filename1> (which
must be a token) will clear everything and load move 0 as it was when
the command readline(2) <filename1> <filename2> was last run
(along with some internal serial numbers). Don’t put the file name in
quotes in the Lestrade interface! No context information will be saved,
just exactly the information in move 0; so this is a rather limited include
feature. Nor is there any way to merge theories (but see the following
import command).
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the import command: This command with argument <filename1> will
add the information in move 0 saved by the previous reading of <filename1>.lti
or <filename1>.tex as a saved move 1 with the name <filename1>.
This is nondestructive: information in the current working environ-
ment is otherwise unaffected (unless a saved move with the same name
is overwritten). This allows proofs written in other files to be imported,
with care (one needs to note the automated changes of identifiers which
correct name conflicts, noted just below).

warning: name conflicts Instances of the open, clearcurrent, and import

commands may cause name conflicts. If a name is declared in the move
to be added which is already defined, names in the added move will be
extended as described above until they are new.

variables: We refer to all identifiers declared at the next move without def-
initions as variables . Construction variables will always have been in-
troduced with the postulate command at some stage when the current
next move was the last move.

argument list semantic conditions: We provide further that all items in
the argument lists which follow the keyword and the identifier being
declared in declare, postulate, and define commands must be vari-
ables. Moreover, they must appear in the order in which they were
declared. This is an easy way to enforce the constraint that the sort
of a variable in such an argument list may depend on a second vari-
able appearing in the argument list only if this second variable appears
earlier in the list. Conversely, if the sort of a variable in the list de-
pends on any second variable, this second variable must appear earlier
in the argument list. [This is enforced by temporarily replacing the
next move with just the items in the argument list and then declara-
tion/sort checking all items in the argument list: it is interesting to
note that the internal data structure used to represent an argument
list in Lestrade is exactly the same data structure used to represent a
move.]

semantics of the declare command: The command

declare <identifier> <object sort>
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declares the identifier as having the given object or construction sort
(as long as the identifier is undeclared and the sort term sort-checks).

The object sort terms obj, prop, type of course will sort check. The
term that <object term> sort-checks iff the object term has sort
prop. The term in <object term> sort-checks iff the object term
has sort type.

The last argument can also be a construction sort term, allowing one-
line declarations of construction variables. A construction sort term has
the shape [x1, . . . , xn ⇒ τ ] and will type check if each xi is a variable
in the next move and τ type checks as an object sort.

This declaration is added to the next move if it succeeds.

constructing an object: The command

postulate <identifier> : <object sort>

(with null argument list) works as the previous line does, except that
the identifier is declared (and type checked) at the last move.

general semantics of the postulate command: The command

postulate <identifier> <argument list> : <object sort>

declares the identifier (which must not have been previously declared)
as a construction of arity equal to the (positive) length of the argument
list.11. If the argument list is (x1, . . . , xn), with the type of xi being τi,
and the object sort is τ , the type recorded is

[(x1, τ1), . . . , (xn, τn)⇒ (−, τ)],

where the variables xi are to be understood as bound. This may be
a quite complex dependent type: observe that each τi may contain
occurrences of xj for j < i, and τ may contain occurrences of any of
the xi’s (and any variable occurring free in τ or any τi must be one of
the xi’s). Lestrade in fact renames all the bound variables, attaching

11The command was originally called construct and this may need to be fixed in old
scripts.
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a fresh numerical tag (the same tag for all variables in this argument
list) to each of the xi’s, and this procedure is repeated whenever a
substitution is made into a construction sort, to avoid bound variable
collision problems. Note that some or all of the τi’s may themselves be
construction sorts, but the output type τ must be an object sort. The
symbol - is a marker indicating that this is a primitive construction
rather than a defined construction. This declaration is added to the
last move.

defining an object: The command

define <identifier> : <object term>,

where the object term (which we write as D) type checks, declares the
identifier (which must not have been declared previously) with the sort
[(D, τ)] [as if it were a nullary construction], where τ is the type of
D. The identifier can be expanded to D by prover constructions as
required.

general semantics of the define command: The command

define <identifier> <argument list> : <object term> ,

where the object term (which we write as D) checks with type τ , will
cause the identifier (which must not have been declared previously) to
be assigned the sort [(x1, τ1), . . . , (xn, τn) ⇒ (D, τ)]: this will succeed
exactly if τ is the sort of D and [(x1, τ1), . . . , (xn, τn)⇒ (−, τ ] is a well-
formed construction sort (satisfying expected restrictions on variable
dependencies, etc.) This serves as the recorded type of the identifier
declared (and the declaration is created at the last move). The iden-
tifier can be expanded to its sort (understood as a λ-term) by prover
constructions, and any term D(t1, . . . , tn) which is well-typed can be
expanded by substitution in the natural (and rather complex) way.

semantics of the rewritep and rewrited commands: These commands
allow construction of a primitive construction witnessing validity of a
rewrite rule (rewritep12), or introduction of a rewrite rule by exhibit-
ing a construction already constructed or defined of the appropriate

12the shape of this command was originally rewritec, and this may need to be revised
in old scripts.
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type (rewrited). The argument list component consists of an initial
segment of the actual argument list of variable arguments for the initial
identifier, followed by two complex terms, the pattern pattern and the
target target. The pattern and the target must be of the same type τ ;
Lestrade generates an additional argument P typed as a construction
from τ to prop. The intended sort of the initial identifier is then the
construction sort sending the argument list before the pattern with P
and a variable of sort that P (pattern) appended, to the output type
that P (target). All the variables in the explicitly given argument list
must actually appear in pattern; all variables that appear in target

must appear in pattern. The existence of a construction of the indi-
cated type will witness that any proof of P (pattern) can be mapped to
a proof of P (target), which certainly looks like evidence that pattern
must be equal to target for all values of the included variables. The
initial identifier in the case of rewritep must be undeclared, and is de-
clared with the indicated type if all the conditions hold (and a rewrite
rule pattern := target is recorded, with variables moved to a fresh
namespace). The initial identifier in the case of rewrited must already
have been defined or constructed with the indicated type – if this checks
out, a rewrite rule is recorded in the same way. When a rewrite rule is
added to the last move with rewrited, any rewrite rule already associ-
ated with the same first identifier in the last move is deleted (but such
rules are not deleted from lower indexed moves): this supports changes
in the order in which rewrite rules are applied, as roughly speaking the
most recently introduced rewrite rule is attempted first. It should be
noted again that a rewritep or rewrited command declares a number
of additional variables before declaring (or confirming the validity of
the declaration of) the initial identifier.13 14

13The symmetry between prop and type could be restored by providing versions of
these commands which generate the new variable P as a variable construction from the
common type of the source and target to type rather than prop, but we see no particular
reason to do this.

14It is important to notice that introduction of an object by rewritep definitely amounts
to introducing a new primitive to a theory, but further the introduction of an object by
rewrited may fundamentally change a theory (rewrited is not just a definition facility,
or viewing it as such amounts to adopting a fundamentally stronger logical framework).
We have an example of a theory which becomes inconsistent on carrying out a rewrited

command; we also have an example of a theory in which new types become possible on
execution of a rewrited command, because rewriting may be used in checking whether
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Use of rewriting in a definition does not record dependencies on the
rewrite theorem (whether postulated or defined) in the resulting term;
thus Lestrade does not allow export of things defined in a given move
using rewrites declared in that move to lower indexed moves. The
way this is enforced is that the postulate and construct commands will
not work if there are rewrites declared in the next move. Further,
an attempt to open a saved move with rewrites in it will fail if there
are conflicts with names introduced since that move was saved (in the
absence of rewrites, a renaming scheme fixes this).

expansion of local definitions: Whenever a declaration is created in the
last move, all defined identifiers in it whose declarations are found in
the next move must be expanded (this is one way that the internal
λ-terms appear; they can also be introduced by the implicit argument
inference mechanism): this must be done because a declaration at the
last move needs to continue to make sense if the next move is closed. Of
course, if such expansions reveal dependencies on variables not found
in the argument list, an error is reported.

computation of sorts of terms: We now discuss assignment of sorts to
terms, and computation of identity of sort terms [and, as it turns out,
computation of definitional expansions].

A bare identifier (whether an object or a construction) is assigned type
by lookup, with the proviso that an identifier typed (D, τ) (denoting
a defined object) is simply assigned type τ . A term f(t1, . . . , tn) (or
t1ft2, . . . , tn) is assigned a sort using a procedure of matching of the
declared type (x1, σ1), . . . , (xn, σn) ⇒ (D, σ) of the identifier f (where
D can be - if f is constructed or a term if f is defined) with the list of
types τi of the ti’s. If the type τ1 is identical to the type σ1, we continue
by replacing x1 with t1 in each σi and σ to obtain σ∗

i and σ∗, then
continuing the matching of (t2, . . . , tn) with (x2, σ

∗
2), . . . , (xn, σ

∗
n) ⇒

(D∗, σ∗). The lengths of the two argument lists must be the same for
the matching to succeed, and the final type assigned is the final form
of σ∗. It is worth noting that if f is defined, the term D∗ obtained at
the end of this procedure is the definitional expansion of f(t1, . . . , tn).

considerations of bound variable naming and definitions may allow

types match.
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typographically distinct terms and sorts to be identified: construc-
tion sorts are regarded as identical when one can be converted to the
other by renaming of bound variables: the computational procedure
for checking this is similar to the term typing procedure. Terms are
regarded as identical when an expansion of defined terms or an appli-
cation of rewrite rules can convert one to the other: when a failure to
match is encountered, an attempt is made to correct it by expanding
definitions [or by rewriting]. Due to the simple form of our terms, this
is straightforward to compute.

expansion of definitions: Expansion of F (t1, . . . , tn) where the type of F
is ((x1, τ1), . . . , (xn, τn)⇒ (D, τ) is a straightforward matter of substi-
tution [already described incidentally in the discussion of type match-
ing], and sort safe as long as all terms involved have already been
sort-checked. Have t1 replace x1 in all terms and types, then t2 replace
x2, and so forth. As noted above, a defined construction appearing by
itself as an argument expands to its sort, which can be understood as
a λ-term.

action of rewrite rules: This is a new feature. When a term is rewritten,
the most recently introduced rewrite rule whose pattern matches it is
applied to it [the precise order is, most recently introduced rewrite rule
in the highest indexed move which contains such a rewrite rule; the use
of the most recently introduced rule first makes it easier for the user to
reprogram the rewrite system]. Equations between objects and types
will succeed if they can be made to work by rewriting, just as they will
succeed if they can be made to work by definition expansion. Only the
rewrites introduced at the last move or moves of lower index are ap-
plied, though rewrites at the next move are stored. The list of rewrites
recorded at each move is managed in the same way as the moves are
managed by the open, close, clearcurrent, and save commands.

To maintain confluence, there is a subtlety about matching: when a
pattern is matched with a term, proper subterms of the target term are
head-rewritten before being matched with the source, and the match
succeeds only if it still works after this rewriting.

The object output of the define command is rewritten. Types are not
rewritten in any command (though rewriting may be used to verify
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equivalences between types: the fact that the system does is an indica-
tion that the rewrite system adds something to the logical framework,
and we have actual examples which demonstrate this).

another type inference feature (implicit arguments): Lestrade has an
extensive ability to accept construction and definition declarations of
constructions with missing arguments. Lestrade infers and supplies the
required missing arguments at declaration time by finding variables in
the sorts of the explicitly given arguments, and it is able to determine
where to put them to get a well formed argument list. When typing
an instance of a construction with implicit arguments, it deduces the
values of the implicit arguments by sort matching. This includes the
ability to find construction arguments which have not been given ex-
plicit names. For a construction implicitly given to be recovered when
it appears in a sort in applied position, it must have a fully abstract
occurrence, that is, one in which its arguments coincide with an initial
segment of the bound variables in its context in the correct order, or it
must be applied to concrete fully sortable arguments [the circumstances
under which implicit arguments can be inferred are quite complicated
to describe; there are extensive examples in sample files on the Lestrade
page, mostly simple ones, but a better essay on this is needed].

Implicit arguments can be recognized in the output because their names
have a prepended dot. The implicit argument mechanism does not af-
fect the core logic of Lestrade at all: all terms in fact have all usually
expected arguments. It is purely a function of input and output. Sort
displays show all input arguments, implicit and explicit of a construc-
tion whose sort is being displayed: the default behavior is that only ex-
plicit arguments of constructions appearing in applied position in sort
displays are shown: this behavior can be changed as desired with com-
mands showimplicit and hideimplicit. The sort matching which
supplies implicit arguments may fail if some definitional expansion of
the sort being matched actually eliminates the information about the
implicit argument in the sort: there is no guarantee that the way the
implicit argument is presented in the sort in the original declaration is
deducible semantically from the value of the sort: it is entirely a matter
of syntax. Rewriting cannot at present be used to assist implicit argu-
ment extractions, though we have encountered situations which suggest
to us that this should be implemented.
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The precise condition under which an implicit construction argument
appearing in applied position in the sort of an explicit argument can
be matched is that it appears either applied to arguments which do
not depend on variables bound in that sort term (in which case it
will match an explicit construction term in applied position applied to
matching terms) or applied to arguments which are an initial segment
of the variables bound in the context of that sort term, appearing
in the precise order in which they appear bound in the context (in
which case it will match a lambda term constructed by Lestrade, if the
term matching it does not depend on any other bound variables in the
context). [This is obscure and needs supporting examples.]

Introduction of this feature made it much less urgent to install user
entered lamba terms (though we have now done this): laborious con-
struction of constructions by the user (notably predicates quantified
over) is greatly reduced, as the values of these arguments can often be
inferred by higher order matching as anonymous internal lambda terms.
It does also mean that one should look carefully at the actual type of a
defined or constructed construction, including its implicit arguments:
all computations with a construction with implicit arguments will use
its full type.

A term f(t1, . . . , tm) where m is less than the arity n of f will be read
as [(xm+1 . . . xn) ⇒ f(t1, . . . , tm, xm+1, . . . , xn)] if the types of the ti’s
are appropriate. This only works if the argument list is explicitly closed
with parentheses. Such a term can only appear as an argument.

The user may enter λ-terms as arguments. The syntax is of the exact
form [x1, . . . , xn ⇒ T ], the bound variables xi being variables declared
at the next move, separated by commas, and T being an object term.
The identifier => is now reserved. The form displayed by Lestrade for
these terms will have the bound variables decorated with a namespace
index and will be fully adorned with sorts for the variables.
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3.2.1 Analogies between Lestrade lines and Automath lines; re-
marks on differences between the Lestrade and Automath
type systems

An Automath line consists of four components: an indicator of context, an
identifier being declared, a definition of that identifier, and a type. The
analogue of the identifier component in a Lestrade line is always evident: it
is the identifier following the command keyword. We are here considering
only declare, postulate, and define lines in a Lestrade text: other lines
do not have analogues in Automath.

In Automath, the context mechanism is fairly simple, consisting of either
0 or a reference to a previous identifier. One is then defining the new identifier
as indicated by the definition component with a stated type in a context in
which the previous identifier and all identifiers one finds by backtracking to
its context indicator and iterating are present.

In Lestrade, the context is more complex: the intersection of the ex-
plicit context given by Automath with variables declared in the next move is
present as the argument list to the identifier introduced by a postulate or
define command (all items being listed, with no chained expansion of the
context as in Automath), but additional related roles are played by the sys-
tem of moves. A variable introduced in Lestrade using the declare command
may be thought of as having all previous variables in its (unindicated) con-
text, and certainly at least those variables which explicitly appear in its sort:
note that when a variable appears in an argument list, it must be preceded
by all the variables mentioned in its sort.15 Argument lists in Lestrade are
more flexible than contexts in Automath: Automath contexts are restricted
to forming a tree under the initial segment relation.

The construction of the special definition body PN used in Automath for
a primitive notion is handled in Lestrade by using the postulate command
rather than the define command. In the postulate command a type is
explicitly given; in the define command, Lestrade computes and displays the
sort: the user does not need to supply it. The construction of the definition
body - used for variables in Automath is handled in Lestrade by using the
declare command, for objects, and by using the postulate command then
closing the next move, to obtain variable constructions.

The extra trick which allows user-entered lambda terms to be avoided (so

15We ignore the curious effects of the implicit argument inference feature of Lestrade
for the moment.
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far) is that whenever an expression is defined using a given context, what
is defined is not a variable expression specific to that context, in Automath
usable in a different context by supplying terms of appropriate types to re-
place the elements of the original context not shared with the current context
(considered as an argument list), but a construction present at the last move,
in effect a name for the construction implementing the variable expression,
which would have to be expressed in Automath as a lambda term. Further,
constructing a primitive construction of a given sort at the last move, then
closing the next move, gives one a variable construction of that type in the
formerly last, now next move. By the use of these two devices, and the fact
that constructions may be supplied as arguments to other constructions using
their atomic names, one entirely avoids the need to write nonatomic terms
of construction sorts. The further feature that constructions do not have
construction output ensures that the user never needs to type a construction
sort. The ability to enter λ-terms and construction sorts has been installed
in Lestrade, though.

It does appear that for fluent use of the system it would be advisable to
introduce an ability to declare construction variables directly using a notation
for construction sorts and to enter explicit lambda terms as arguments to
Lestrade terms (and we have now done this). But it is useful to see that no
logical power will be added to our framework when we do this.

In Lestrade, propositions are not themselves sorts, but objects p of a sort
prop, correlated with sorts that p of proofs of p.16 Mathematical types are
for us similarly objects τ of a sort type, correlated with sorts in τ inhabited
by specific objects of those types. Operations on propositions or types can
then be postulated naturally by declaring constructions with arguments of
type prop or type (not actual sorts as arguments).

Constructions are not objects and cannot be outputs of constructions.17

But they can be inputs to constructions, and one can create objects correlated
with constructions of a particular sort. For example, we do not identify
proofs of p → q with constructions from that p to that q (which are not

16Later dialects of Automath have propositions as types; references I have looked at
suggest that earlier dialects have a system analogous to the Lestrade system, with p an
object of type prop and a separate type Proofs(p) inhabited by proofs of p; it may always
have been the case that the same notation was used in Automath code for the object of
type prop and the associated type.

17This might superficially seem to be modified by the 10/10 update allowing construction
arguments to be constructed by currying.
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objects), but instead provide a construction Ifproof which sends such a
construction to an object of the sort that p→ q. One can see in the extensive
Lestrade book given in section 6 that this does not obstruct the usual sorts
of reasoning in a system of this kind. The move system of Lestrade quite
naturally implements reasoning under hypotheses ending with the proof of
an implication or reasoning about arbitrarily postulated objects ending in
the proof of a universally quantified statement.

It is worth noting that Lestrade does not have any specific notion of
construction application, any more than it has user-written lambda terms.
Lestrade constructions are always applied to their complete argument lists18

in the format in which they were defined (or appear by themselves as argu-
ments19). The application of Lestrade constructions to their argument lists
corresponds to the application of atomic defined terms in Automath to argu-
ment lists replacing items in the context in which they were originally defined
(substitution rather than application), although the atomic Automath terms
are as it were variable expressions and the Lestrade construction terms in
effect denote functions.

A real difference in strength between Automath and Lestrade can be
seen in connection with the odd subtyping supported in later versions of
Automath. Automath regards a type inhabited by functions from type τ to
type prop as a subtype of type prop. Further, it regards an element p of
prop as being itself a type (in our terms, that p is identified with p). This
gives quantification over type τ for free. Any predicate of type τ is itself a
proposition. If a predicate P is inhabited by an object pp, then this object
is itself a function from elements n of type τ to proofs of P (n): so such an
inhabitant is a proof of (∀n ∈ τ : P (n)). Further, τ itself may be a quite
complex function type: we get quantification of all orders for free from the
type system. In Lestrade, it is actually possible to postulate quantification
over all object types and construction sorts uniformly, indirectly, in a way
suggested at the end of our large example of Lestrade text, but it takes
considerable work. To provide quantification over any type (or indeed to get
any inhabitant of prop at all) requires some declarations in Lestrade.

Let’s explore why an inhabitant of P is a function from n ∈ τ to type
P (n) in the Automath framework. The underlying idea is that an expression

18or to partial argument lists in which the missing implicit arguments can be extracted
from the sorts of the arguments given explicitly.

19The 10/10 update allows constructions with shortened argument lists to represent
“curried” construction arguments.
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f(x) of type σ(x) is an expression λx.f(x) of type (λx.σ(x)). So if f is of
type (λx.σ(x)), f(x) is of type σ(x). So if P is of type τ → prop, which is
supposed to be an element of type prop as well, then an inhabitant of P is a
function f such that f(x) is an inhabitant of P (x). But P (x) is also of type
prop, so f(x) is a proof of P (x) for each x. This is very cute. It also has
all the advantages of theft over honest toil, as Russell said in some similar
context.

For us, for any type τ we must declare a constructor sending any predicate
P of type τ to an element ∀P of prop, then further postulate a construction
sending any construction which takes x : τ to an element of that P (x)
to a proof of ∀P . We can declare these uniformly over the object types
fairly easily, and with a little trickery we can indirectly declare them over
all construction sorts as well. But we also have the option of declaring only
the quantifiers we want, and never enabling higher order quantification. An
Automath theory seems to be of necessity a higher order theory.

In his paper [9] describing his implementation [8] of Automath, Wiedijk
discusses the difference between the λ-types of dependently typed functions
found in Automath and the Π-types found in the currently popular type
systems. I am frankly not certain of the place of the Lestrade type system
on this dimension. The difficulties that arise in Automath related to this
issue seem to relate to the possibility of the same term appearing as both an
object of the system and a sort, and this is ruled out in Lestrade. The rule
that if F types as G, then Fa types as Ga, which seems to characterize the
λ-approach, holds for Lestrade, but note that a must be a complete argument
list, Fa must be an object (and so cannot be a construction) and Ga must
be an object sort (and the object sorts have no intersection with the objects
of the theory, though objects can be packaged in them via the that and in

constructors). In fact, where F : G and F (a) : G(a) in Lestrade, the four
objects mentioned are all of different metasorts: F is a construction, G is a
construction sort, F (a) is a object and G(a) is an object sort.
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3.2.2 A sample Lestrade book with rewriting

We introduce a brief Lestrade book to illustrate capabilities of the rewrite
system.

Watson, referred to in the comments, is an earlier theorem proving project
of mine (see [11]), an equational prover which incorporated a fairly elaborate
scheme of programming using interlocking rewrite rules, described in [10].
We believe that most features of the Watson programming system are im-
plementable in Lestrade rewrites. The rule Assocs in the second example,
which implements regrouping of arbitrarily complex nested sums so that all
grouping is to the right, parallels a basic Watson example.

Notice in both examples that the final examples of define commands
exhibit “execution behavior”. It would be useful to give an example in which
the basic properties underlying the rewrite rules are proved then the rewrites
introduced using the rewrited command, rather than having the construc-
tions providing evidence for the validity of the rewrite rules introduced by fiat
using the rewritep command: though one should also note that rewritep

is a perfectly respectable way to introduce equational axioms.

Lestrade execution:

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate pair x y obj

>> pair: [(x_1:obj),(y_1:obj) => (---:obj)]

>> {move 0}
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postulate p1 x obj

>> p1: [(x_1:obj) => (---:obj)]

>> {move 0}

postulate p2 x obj

>> p2: [(x_1:obj) => (---:obj)]

>> {move 0}

rewritep First x y, p1 pair x y, x

>> First’’: [(First’’’_1:obj) => (---:prop)]

>> {move 1}

>> First’: that First’’(p1((x pair y))) {move

>> 1}

>> First: [(x_1:obj),(y_1:obj),(First’’_1:[(First’’’_2:

>> obj) => (---:prop)]),

>> (First’_1:that First’’_1(p1((x_1 pair

>> y_1)))) => (---:that First’’_1(x_1))]

>> {move 0}

rewritep Second x y, p2 pair x y, y
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>> Second’’: [(Second’’’_1:obj) => (---:prop)]

>> {move 1}

>> Second’: that Second’’(p2((x pair y))) {move

>> 1}

>> Second: [(x_1:obj),(y_1:obj),(Second’’_1:

>> [(Second’’’_2:obj) => (---:prop)]),

>> (Second’_1:that Second’’_1(p2((x_1 pair

>> y_1)))) => (---:that Second’’_1(y_1))]

>> {move 0}

open

declare x1 obj

>> x1: obj {move 2}

declare y1 obj

>> y1: obj {move 2}

define reverse x1 : pair (p2 x1, p1 x1)

>> reverse: [(x1_1:obj) => (---:obj)]

>> {move 1}
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define reversetest x1 y1 : reverse (pair \

x1 y1)

>> reversetest: [(x1_1:obj),(y1_1:obj) =>

>> (---:obj)]

>> {move 1}

close

% notice that Lestrade executes the pair reversal!

define testing x y: reversetest x y

>> testing: [(x_1:obj),(y_1:obj) => ((y_1 pair

>> x_1):obj)]

>> {move 0}

clearcurrent

% associative law simplication

% I believe I have implemented almost the full power of the Watson

% rewrite rule programming scheme. The interlock between matching and

% rewriting should make it possible to implement its control structures

% without extra primitives.

postulate Nat type
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>> Nat: type {move 0}

declare m in Nat

>> m: in Nat {move 1}

declare n in Nat

>> n: in Nat {move 1}

declare p in Nat

>> p: in Nat {move 1}

postulate + m n in Nat

>> +: [(m_1:in Nat),(n_1:in Nat) => (---:in

>> Nat)]

>> {move 0}

postulate assoc m in Nat

>> assoc: [(m_1:in Nat) => (---:in Nat)]

>> {move 0}

postulate assocs m in Nat
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>> assocs: [(m_1:in Nat) => (---:in Nat)]

>> {move 0}

rewritep Assocfails m, assoc m, m

>> Assocfails’’: [(Assocfails’’’_1:in Nat) =>

>> (---:prop)]

>> {move 1}

>> Assocfails’: that Assocfails’’(assoc(m))

>> {move 1}

>> Assocfails: [(m_1:in Nat),(Assocfails’’_1:

>> [(Assocfails’’’_2:in Nat) => (---:prop)]),

>> (Assocfails’_1:that Assocfails’’_1(assoc(m_1)))

>> => (---:that Assocfails’’_1(m_1))]

>> {move 0}

rewritep Assocsfails m, assocs m, m

>> Assocsfails’’: [(Assocsfails’’’_1:in Nat)

>> => (---:prop)]

>> {move 1}

>> Assocsfails’: that Assocsfails’’(assocs(m))

>> {move 1}
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>> Assocsfails: [(m_1:in Nat),(Assocsfails’’_1:

>> [(Assocsfails’’’_2:in Nat) => (---:prop)]),

>> (Assocsfails’_1:that Assocsfails’’_1(assocs(m_1)))

>> => (---:that Assocsfails’’_1(m_1))]

>> {move 0}

rewritep Assocrule m n p, (m + n) + p, m \

+ (n + p)

>> Assocrule’’: [(Assocrule’’’_1:in Nat) =>

>> (---:prop)]

>> {move 1}

>> Assocrule’: that Assocrule’’(((m + n) + p))

>> {move 1}

>> Assocrule: [(m_1:in Nat),(n_1:in Nat),(p_1:

>> in Nat),(Assocrule’’_1:[(Assocrule’’’_2:

>> in Nat) => (---:prop)]),

>> (Assocrule’_1:that Assocrule’’_1(((m_1

>> + n_1) + p_1))) => (---:that Assocrule’’_1((m_1

>> + (n_1 + p_1))))]

>> {move 0}

rewritep Assocsrule m n p, (m + n) + p, assocs(assoc(m \

+ (assocs (n+p))))

>> Assocsrule’’: [(Assocsrule’’’_1:in Nat) =>
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>> (---:prop)]

>> {move 1}

>> Assocsrule’: that Assocsrule’’(((m + n) +

>> p)) {move 1}

>> Assocsrule: [(m_1:in Nat),(n_1:in Nat),(p_1:

>> in Nat),(Assocsrule’’_1:[(Assocsrule’’’_2:

>> in Nat) => (---:prop)]),

>> (Assocsrule’_1:that Assocsrule’’_1(((m_1

>> + n_1) + p_1))) => (---:that Assocsrule’’_1(assocs(assoc((m_1

>> + assocs((n_1 + p_1)))))))]

>> {move 0}

declare q in Nat

>> q: in Nat {move 1}

define test m n p q:(m+n)+(p+q)

>> test: [(m_1:in Nat),(n_1:in Nat),(p_1:in

>> Nat),(q_1:in Nat) => ((m_1 + (n_1 + (p_1

>> + q_1))):in Nat)]

>> {move 0}

declare r in Nat

>> r: in Nat {move 1}
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declare s in Nat

>> s: in Nat {move 1}

define test2 m n p q r s:((m+n)+p)+((q+r)+s)

>> test2: [(m_1:in Nat),(n_1:in Nat),(p_1:in

>> Nat),(q_1:in Nat),(r_1:in Nat),(s_1:in

>> Nat) => ((m_1 + (n_1 + (p_1 + (q_1 + (r_1

>> + s_1))))):in Nat)]

>> {move 0}
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3.3 A sample Lestrade book with implicit arguments

Lestrade execution:

clearall

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

postulate & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

postulate Andintro pp qq:that p & q
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>> Andintro: [(.p_1:prop),(pp_1:that .p_1),(.q_1:

>> prop),(qq_1:that .q_1) => (---:that (.p_1

>> & .q_1))]

>> {move 0}

declare rr2 that p&q

>> rr2: that (p & q) {move 1}

postulate Andelim1 rr2:that p

>> Andelim1: [(.p_1:prop),(.q_1:prop),(rr2_1:

>> that (.p_1 & .q_1)) => (---:that .p_1)]

>> {move 0}

postulate Andelim2 rr2:that q

>> Andelim2: [(.p_1:prop),(.q_1:prop),(rr2_1:

>> that (.p_1 & .q_1)) => (---:that .q_1)]

>> {move 0}

define Ptest pp:Andintro pp pp

>> Ptest: [(.p_1:prop),(pp_1:that .p_1) => ((pp_1

>> Andintro pp_1):that (.p_1 & .p_1))]

>> {move 0}
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postulate -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

postulate Ded pp2 that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}

close

postulate Ifintro Ded:that p -> q

>> Ifintro: [(.p_1:prop),(.q_1:prop),(Ded_1:

>> [(pp2_2:that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

define Ifintro0 p q Ded : Ifintro Ded

open

declare q2 that q

>> q2: that q {move 2}
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define qid q2:q2

>> qid: [(q2_1:that q) => (---:that q)]

>> {move 1}

close

define Selfimp q: Ifintro qid

>> Selfimp: [(q_1:prop) => (Ifintro([(q2_2:that

>> q_1) => (q2_2:that q_1)])

>> :that (q_1 -> q_1))]

>> {move 0}

declare rr that p-> q

>> rr: that (p -> q) {move 1}

postulate Mp pp rr:that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),

>> (rr_1:that (.p_1 -> .q_1)) => (---:that

>> .q_1)]

>> {move 0}

open
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declare x obj

>> x: obj {move 2}

postulate P x prop

>> P: [(x_1:obj) => (---:prop)]

>> {move 1}

close

postulate Forall P: prop

>> Forall: [(P_1:[(x_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}

declare U that Forall P

>> U: that Forall(P) {move 1}

declare y obj

>> y: obj {move 1}

postulate Ug U y that P y

>> Ug: [(.P_1:[(x_2:obj) => (---:prop)]),
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>> (U_1:that Forall(.P_1)),(y_1:obj) => (---:

>> that .P_1(y_1))]

>> {move 0}

open

declare z obj

>> z: obj {move 2}

postulate ui z that P z

>> ui: [(z_1:obj) => (---:that P(z_1))]

>> {move 1}

close

postulate Ui P, ui:that Forall P

>> Ui: [(P_1:[(x_2:obj) => (---:prop)]),

>> (ui_1:[(z_3:obj) => (---:that P_1(z_3))])

>> => (---:that Forall(P_1))]

>> {move 0}

open

declare w obj

>> w: obj {move 2}
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open

declare zz that P w

>> zz: that P(w) {move 3}

define zzid zz:zz

>> zzid: [(zz_1:that P(w)) => (---:that

>> P(w))]

>> {move 2}

close

define Q w:P w -> P w

>> Q: [(w_1:obj) => (---:prop)]

>> {move 1}

define zzz w : Ifintro zzid

>> zzz: [(w_1:obj) => (---:that (P(w_1) ->

>> P(w_1)))]

>> {move 1}

close

define test P: Ui Q, zzz
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>> test: [(P_1:[(x_2:obj) => (---:prop)])

>> => (Ui([(w_3:obj) => ((P_1(w_3) -> P_1(w_3)):

>> prop)]

>> ,[(w_4:obj) => (Ifintro([(zz_5:that P_1(w_4))

>> => (zz_5:that P_1(w_4))])

>> :that (P_1(w_4) -> P_1(w_4)))])

>> :that Forall([(w_6:obj) => ((P_1(w_6)

>> -> P_1(w_6)):prop)]))

>> ]

>> {move 0}

declare r prop

>> r: prop {move 1}

open

declare outerhyp that (p->q) & (q->r)

>> outerhyp: that ((p -> q) & (q -> r)) {move

>> 2}

define firstlink outerhyp : Andelim1 outerhyp

>> firstlink: [(outerhyp_1:that ((p -> q)

>> & (q -> r))) => (---:that (p -> q))]

>> {move 1}
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define secondlink outerhyp : Andelim2 \

outerhyp

>> secondlink: [(outerhyp_1:that ((p -> q)

>> & (q -> r))) => (---:that (q -> r))]

>> {move 1}

open

declare innerhyp that p

>> innerhyp: that p {move 3}

define step1 innerhyp: Mp innerhyp \

firstlink outerhyp

>> step1: [(innerhyp_1:that p) => (---:

>> that q)]

>> {move 2}

define step2 innerhyp: Mp (step1 innerhyp, \

secondlink outerhyp)

>> step2: [(innerhyp_1:that p) => (---:

>> that r)]

>> {move 2}

close
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define step3 outerhyp : Ifintro step2

>> step3: [(outerhyp_1:that ((p -> q) & (q

>> -> r))) => (---:that (p -> r))]

>> {move 1}

close

define Transimp0 p q r: Ifintro0 ((p->q)&(q->r),p->r,step3)

define Transimp p q r: Ifintro step3

>> Transimp: [(p_1:prop),(q_1:prop),(r_1:prop)

>> => (Ifintro([(outerhyp_2:that ((p_1 ->

>> q_1) & (q_1 -> r_1))) => (Ifintro([(innerhyp_3:

>> that p_1) => (((innerhyp_3 Mp Andelim1(outerhyp_2))

>> Mp Andelim2(outerhyp_2)):that r_1)])

>> :that (p_1 -> r_1))])

>> :that (((p_1 -> q_1) & (q_1 -> r_1)) ->

>> (p_1 -> r_1)))]

>> {move 0}

open

declare x obj

>> x: obj {move 2}

postulate ev x that P x

>> ev: [(x_1:obj) => (---:that P(x_1))]
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>> {move 1}

close

postulate Ui2 ev:that Forall P

>> Ui2: [(.P_1:[(x_2:obj) => (---:prop)]),

>> (ev_1:[(x_3:obj) => (---:that .P_1(x_3))])

>> => (---:that Forall(.P_1))]

>> {move 0}

open

declare x17 obj

>> x17: obj {move 2}

open

declare ev2 that P x17

>> ev2: that P(x17) {move 3}

define evid2 ev2: ev2

>> evid2: [(ev2_1:that P(x17)) => (---:

>> that P(x17))]

>> {move 2}
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close

define theimp x17: Ifintro evid2

>> theimp: [(x17_1:obj) => (---:that (P(x17_1)

>> -> P(x17_1)))]

>> {move 1}

close

define testing P : Ui2 theimp

>> testing: [(P_1:[(x_2:obj) => (---:prop)])

>> => (Ui2([(x17_4:obj) => (Ifintro([(ev2_5:

>> that P_1(x17_4)) => (ev2_5:that

>> P_1(x17_4))])

>> :that (P_1(x17_4) -> P_1(x17_4)))])

>> :that Forall([(x17_6:obj) => ((P_1(x17_6)

>> -> P_1(x17_6)):prop)]))

>> ]

>> {move 0}
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3.4 Formalization of the sort system of Lestrade

We use the notation T [a/x] for substitution of a notation a for a variable x
in a notation T .

Metasorts esort (object sort), asort (construction sort),20 and arglist n
(argument list sorts for argument lists of length n) for each positive n are
postulated. These are not internal sorts of Lestrade at all. The union of the
metasorts esort and asort is the metasort sort.

prop and type are of metasort esort.
If p is of sort prop, (that p) is of metasort esort.
If τ is of sort type, (in τ) is of metasort esort.
All terms of metasort esort are built in these ways.
If x is a term of sort τ , then τ is of metasort sort.
A countable supply of variables of each sort is given.
We view a list [t1, . . . , tn] as a construction in the sense of the metatheory

with domain {1,. . . ,n} sending each i to ti: thus [t] is different from t and
any notation [t1, . . . , tn] is handled.

If xi is a variable of sort τi for each i ≤ n, all xi’s are distinct and no
xi occurs in τj for j ≤ i, then [(x1, τ1), . . . , (xn, τn)] is a term of metasort
arglist n. All terms of this metasort are built in this way. Notice that τi’s
may be of metasort esort or asort.

If t is a term of sort τ , then [t] is an argument list of list sort [(x, τ)] (the
list sort being of metasort arglist 1) (for any variable x of sort τ , technically
speaking not occurring in τ , something which will not naturally happen).
For n > 1, [t1, . . . tn] is an argument list of list sort

[(x1, τ1), . . . , (xn, τn)],

where no xi occurs in any tj, iff the list sort is of metasort arglist n and t1
is of sort τ1 and [t2, . . . , tn] is of list sort [(x2, τ2[t1/x1]), . . . , (xn, τn[t1/x1])].
For other list sorts it may have, see the definition of equivalence of objects
of metasorts arglist n given below [basically a rule for renaming bound
variables xi].

If L is of metasort arglist n and τ is of metasort esort, then (L ⇒ τ)
is of metasort asort. All terms of this metasort are built in this way. Notice
that the input sorts found in L may be either construction sorts or object

20These names reflect the older terminology “entity” and “abstraction” for “object” and
“construction”.
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sorts, but the output sort is always an object sort. Note that asort and
esort are disjoint.

If t is a term of sort τ1 and f is a term of sort [(x1, τ1)] ⇒ τ (where x1
does not occur in t), then f [t] is a term of sort τ [t/x1].

If [t1, . . . , tn] is an argument list of list sort [(x1, τ1), . . . , (xn, τn)] where
no tj contains any xi, and f is a term of sort [(x1, τ1), . . . , (xn, τn)]⇒ τ then
f [t1, . . . , tn] is a term of the same sort as g[t2, . . . , tn], where g is a variable
of sort

[(x2, τ1[t1/x1]), . . . , (xn, τn[t1/x1])]⇒ τ [t1/x1].

An equivalence relation on objects of metasort arglist n for each n is
defined: [(x1, τ1)] is equivalent to any [(x∗1, τ1)]. [(x∗1, τ

∗
1 ), . . . , (x∗n, τ

∗
n)] is

equivalent to [(x1, τ1), . . . , (xn, τn)] iff τ1 = τ ∗1 and [(x∗2, τ
∗
2 ), . . . , (x∗n, τ

∗
n)] is

equivalent to
[(x2, τ2[x

∗
1/x1]), . . . , (xn, τn[x∗1/x1])],

where none of the starred variables occur in the unstarred term; the relation
is then extended to be transitive. Equivalent argument list sorts may freely
replace one another in all contexts. This amounts to the observation that
the xi’s are bound in this construction and can freely be renamed. Similarly,
[(x1, τ1), . . . , (xn, τn)] ⇒ τ is equivalent to [(x∗1, τ

∗
1 ), . . . , (x∗n, τ

∗
n)] ⇒ τ ∗ under

the same conditions under which any term [(x1, τ1), . . . , (xn, τn), (xn+1, τ)]
with xn+1 a variable of correct sort is equivalent to

[(x∗1, τ
∗
1 ), . . . , (x∗n, τ

∗
n), (xn+1, τ

∗)].

In particular, a term or list of any sort has all equivalent sorts as well.21

Note that application terms are always of sorts which are of metasort
esort. Non-atomic terms of sorts of metasort asort are of the shape

[(x1, τ1), . . . , (xn, τn)]⇒ (D, τ),

where D is a term of sort τ . ([(x1, τ1), . . . , (xn, τn)] ⇒ (D, τ))[t1, . . . , tn]
reduces to D[t1/x1][t2/x2] . . . [tn/xn], if the argument list is of the correct
argument list sort. The Lestrade user does not in the current version write
any such terms (they are introduced implicitly by definitions of constructions)
or set up any such reductions, but they do appear in displayed sorts and such
reductions happen in sort computations. Equivalence induced by renaming

21An error in this description is most likely to have occurred here: bound variable
renaming is tricky!
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of bound variables is defined for these terms in essentially the same way as
for construction sorts and argument list metasorts.

When the Lestrade engine computes a sort for a term or otherwise makes
a substitution into a bound variable construction, it renames all bound vari-
ables in a way guaranteed to give fresh names. When attempting to match
sorts, the engine attempts definitional expansion of the sorts (and also rewrit-
ing of the sorts) if it does not initially see them as equivalent up to renaming
of bound variables.
10/10/16 change allowing more construction arguments: The code
of 10/10 while not implementing λ terms per se permits easier formation
of construction arguments. A term f(t1, . . . , tm) where m is less than the
arity n of f will be read as [(xm+1 . . . xn) ⇒ f(t1, . . . , tm, xm+1, . . . , xn)] if
the sorts of the ti’s are appropriate. This only works if the argument list is
explicitly closed with parentheses. If f is a defined construction, it will be
definitionally expanded. Such a term can only appear as an argument
10/16/17 change allowing λ-terms: The user may enter λ-terms as argu-
ments. The syntax is of the exact form [x1, . . . , xn ⇒ T ], the bound variables
xi being variables declared at the next move, separated by commas, and T
being an object term. The identifier => is now reserved. The form displayed
by Lestrade for these terms will have the bound variables decorated with a
namespace index and will be fully adorned with sorts for the variables.
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3.5 A sketch of semantics for a large class of Lestrade
theories

The referent of a sort is a set. The referent of a term of a particular sort will
be an element of the referent of the sort. We will refer to the sets which are
referents of sorts (in τ) as “types”. [we may further suppose, if we are willing
to be boringly classical, that the referent of prop has exactly two elements
and that types (that,τ) are also sets, each such type having one element or
none: these sets may also be viewed as types].

The referent of a construction sort ((x1, τ1), . . . , (xn, τn) => (−−−, τ)
is a space of functions whose range is the set which is the referent of τ and
whose domain is a complex set of n-tuples: the domain of the referent of
((x1, τ1), . . . , (xn, τn) => (−−−, τ) is the set of all n-element lists whose
whose head t1 belongs to the referent of τ1 and whose tail belongs to the do-
main of the referent of ((x2, τ2[t1/x1]), . . . , (xn, τn[t1/x1]) => (−−−, τ [t1/x1]).

The scope of this type system is better understood by adding dependent
product constructions and dependent function space constructions: where τ
is a type and F is a construction from the type τ to types, the dependent
product τ × F of τ and F is the set of ordered pairs (t, u) where t ∈ τ and
u ∈ F (t). The dependent arrow type τ → F is the set of constructions
f with domain τ such that f(t) ∈ F (t). Iteration of dependent product
will give referents of the domain types of all of our construction sorts: the
construction sorts themselves are dependent function types.

If the cardinality of the domain of types is taken to be inaccessible and
each type is taken to be of smaller cardinality than the domain of types, it
is demonstrable that each dependent product type and dependent function
type whose first component is a type and values of whose second component
are types is of lower cardinality than the domain of types. Of course we can
produce paradoxes by using type as a component of a sort or by asserting
existence of constructions which violate cardinality restrictions on types.

Lestrade declarations thus translate into assertion of existence of elements
of certain collections of functoions in an ambient set theory.

At the end of the sample book in section 6 we exhibit declarations of
dependent product and dependent function types: although the Lestrade
user does not directly type construction sorts, the user can develop theories
in which these sorts are represented internally by types accessible to the user.
This could be done more faithfully to the Lestrade sort system: what is done
in the book is a proof of concept. It is very important to notice that the
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declarations of dependent product and dependent function types are new
axioms asserted in the logical framework, not consequences of the built-in
features of the logical framework: the logical framework cannot describe its
own inner workings unaided.

One can formulate Lestrade theories which do not fit this semantics: a
constructive theory would have quite different semantics, for example. Some
interesting manipulations of type as a type which are used in current type
systems would of course not fit with the naively set theoretical scheme of
semantics described here.
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4 Using Lestrade

Lestrade is implemented currently in Moscow ML 2.01. The files can be
found on my web page ([12]). I am planning to produce an implementation in
Python 3 (there is a previous implementation in Python, which is deprecated:
it contains errors which I do not intend to correct – instead I plan to port
the ML version back into Python).

I have now installed a function basic() which if called from the ML com-
mand line will disable rewriting and implicit arguments, and a command
explicit() which will disable implicit arguments but leave rewriting construc-
tions active. These are not internal commands of Lestrade. fullversion() will
restore the usual behavior.

Features which we plan to introduce are user-entered λ-constructions (en-
tered as arguments, and only when types of the bound variables are fully
deducible from the body of the construction). A blue-sky idea I am thinking
about is the implementation of imperative programming constructions: it
does not seem impossible that this can be done in a type-safe manner, and
it would be very interesting if it could be done.

Lestrade books are text files with the extension .lti. Edit them with a
text editor (fill them with lines in the format described in section 4) and the
Lestrade checker should be able to do something with them.

The basic file handling command of Lestrade is
readfile "<source file>" "<target file>";

(to be typed on the ML command line!)
which executes the Lestrade lines in the file <source file>.lti and

echoes the commands and any responses from the system to target file>.lti.
After running the file, the user can type Lestrade lines in the interface and
receive immediate feedback both at the console and echoed into the target
file, though our usual approach is to edit the source file and issue the read-
file command again. To exit the interface, type quit. To avoid poisonous
problems with execution of readfile, always end a file of Lestrade commands
run with readfile with the line quit. Execution of files can be chained if
subsequent files start with a load command: in this case it is important that
file names be Lestrade tokens!

The variant command readbook works on .tex files, instead of .lti files,
executing Lestrade text which it finds in verbatim blocks in the LaTeX file
and otherwise echoing LaTeX code. This allows scripts to be maintained
with nice typeset comments.
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One can also type
interface "<target file>"; to enter Lestrade lines at the console and

echo the results to the given target file. If the null string is used, no target
file is used (or at least none is intended).

If the source file contains valid Lestrade commands, the target file will in
fact be executable as a source file with the same effects, and will in addition
be better formatted and commented with such things as the sorts of all the
terms declared.

If an error is encountered while reading a file, Lestrade will stop and
issue an error message. Hitting return will scroll through any further error
messages, and Lestrade will eventually stop the reading of the file and leave
the user in the interface: it will not continue to execute commands in a file
after an error is encountered.

Upgrades now allow the readfile command to be issued in the interface
(it should not appear in a script file, where it will not work correctly). File-
names which are Lestrade tokens (not enclosed in parentheses) may be used
naturally as arguments to readfile in the interface. If an argument is not
a Lestrade token, it can still be given as the final argument if preceded by a
double quote. If readfile appears with only one argument (which will be
the case if an argument begins with a double quote) the second argument
is implicitly scratch (scratchtex for readbook). The target file (second
argument) becomes impossible to open for editing when readfile is issued
in a script; it can be released by running it with output to scratch (or any
other file). Similar considerations apply to readbook.

Notice that a file which appears as the argument to load or import in a
script file must already have been read before the containing script is read.
The error messages will remind the user of this if a problem arises.

A file should always end with the line quit.
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5 Distinctive features of our approach, and

vague philosophical speculations

The general fact that mathematical reasoning and construction of mathe-
matical objects can be managed using a type checking system of this kind
is already well known, from work with other systems (Automath, Coq and
their relations), and examples of constructions of both kinds under Lestrade
appear in section 6.

There are some distinctive features of our approach.
One feature which the reader and the operator of Lestrade will notice is

that the user never has to write any construction sort and does not have to
write λ-terms (though he or she now can do this). All constructions which are
introduced may be assigned names, as if we introduced all constructions in
the style f(x) = x2+1 instead of the style f = (λx.x2+1) or f = (x 7→ x2+1),
though it is now possible to write construction arguments of Lestrade terms
as anonymous λ-terms. I thought originally that no λ-terms were needed
at all, but this is not the case: it is easy to get into a situation where the
name of a construction passes out of scope when a move is closed, but the
construction appears as an argument in a sort, and so is expanded to a λ-
term. An construction can also appear in applied position and pass out of
scope, in which case β-reduction will occur automatically: a λ-term can only
appear as an argument, never in applied position, and this continues to be
true now that the user can enter their own λ-terms.

I have found it interesting working on a style in which constructions which
might appear anonymously as scopes of variable binding constructions have
to be explicitly set up and assigned names in advance, though as I observed
above user-entered λ-terms are now supported. The need to use a lot of
names is limited by the fact that identifiers are regularly freed up when moves
are closed. Fluent handling of construction arguments may be improved
by the recent introduction of constructions applied to shortened argument
lists, interpreted as complex construction terms via currying, as well as the
latest innovation of user-entered λ-terms. It remains the case that an atomic
construction term cannot be declared or defined except schematically via its
values: this reflects a view that the real first-class citizens of a Lestrade world
are its objects.

There is a limitation of my type system. The output sorts of all con-
structions are object sorts (this is superficially modified by the new device
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of curried construction arguments). This I have no intention of changing:
I take the view that constructions are not prima facie first-class objects,
and attempts to convert them into objects (first-class objects) must involve
postulation of suitable constructions by the user. For example, the following
theory introduces a very powerful ability to code constructions using objects,
which leads to Russell’s paradox. The approach I take to implementing type
theory of sets in the previous example has some similarities.
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Lestrade execution:

clearall

open

declare x obj

>> x: obj {move 2}

postulate P x:prop

>> P: [(x_1:obj) => (---:prop)]

>> {move 1}

close

The constructor set is postulated to cast predicates of type obj to objects
of type obj. The fact that postulating an object to correspond to each
predicate is a nontrivial logical move is concealed in the intuitive argument
for Russell’s “paradox” and is in my view the reason why it is a mistake, not
a paradox. The mere existence of set is not enough to derive the paradox:
more dubious assumptions must be made, and duly will be!

Lestrade execution:

postulate set P:obj

>> set: [(P_1:[(x_2:obj) => (---:prop)])

>> => (---:obj)]

>> {move 0}

64



declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

The membership relation is postulated.

Lestrade execution:

postulate E x y:prop

>> E: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

Here is the crux of the mistake. We postulate the comprehension axioms,
the flat-footed assertion of a one-to-one correspondence, for each predicate
P , between evidence for P (x) and evidence for x ∈ {x : P (x)}.

Lestrade execution:

declare x1 that P x

>> x1: that P(x) {move 1}

65



postulate comp P, x x1:that E x set P

>> comp: [(P_1:[(x_2:obj) => (---:prop)]),

>> (x_1:obj),(x1_1:that P_1(x_1)) => (---:

>> that (x_1 E set(P_1)))]

>> {move 0}

declare x2 that E x set P

>> x2: that (x E set(P)) {move 1}

postulate comp2 P, x x2: that P x

>> comp2: [(P_1:[(x_2:obj) => (---:prop)]),

>> (x_1:obj),(x2_1:that (x_1 E set(P_1)))

>> => (---:that P_1(x_1))]

>> {move 0}

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

To complete the execution of our folly, we need to declare the logical
operations of implication and negation in a familiar way. One should note
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that these declarations are fine from a constructive standpoint.

Lestrade execution:

postulate Implies p q:prop

>> Implies: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

postulate False:prop

>> False: prop {move 0}

declare pp that p

>> pp: that p {move 1}

declare rr that Implies p q

>> rr: that (p Implies q) {move 1}

postulate Mp p q pp rr:that q

>> Mp: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (rr_1:that (p_1 Implies q_1)) => (---:

>> that q_1)]

>> {move 0}

67



declare absurd that False

>> absurd: that False {move 1}

postulate Panic p absurd: that p

>> Panic: [(p_1:prop),(absurd_1:that False)

>> => (---:that p_1)]

>> {move 0}

define Not p:Implies p False

>> Not: [(p_1:prop) => ((p_1 Implies False):

>> prop)]

>> {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

postulate Ded pp2:that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}
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close

postulate Impliesproof p q Ded:that Implies \

p q

>> Impliesproof: [(p_1:prop),(q_1:prop),(Ded_1:

>> [(pp2_2:that p_1) => (---:that q_1)])

>> => (---:that (p_1 Implies q_1))]

>> {move 0}

Russell is the Russell predicate (λx : x 6∈ x} while R is the Russell
(paradoxical) set. The argument which follows is familiar. R6 is a proof of
the False in move 0, a disaster.

Lestrade execution:

define Russell x:Not E x x

>> Russell: [(x_1:obj) => (Not((x_1 E x_1)):

>> prop)]

>> {move 0}

open

define R: set Russell

>> R: [(---:obj)]

>> {move 1}

declare R1 that E set Russell, set Russell
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>> R1: that (set(Russell) E set(Russell))

>> {move 2}

define R2 R1:comp2 Russell, set Russell, \

R1

>> R2: [(R1_1:that (set(Russell) E set(Russell)))

>> => (---:that Russell(set(Russell)))]

>> {move 1}

define R3 R1:Mp E set Russell, set Russell, \

False R1 R2 R1

>> R3: [(R1_1:that (set(Russell) E set(Russell)))

>> => (---:that False)]

>> {move 1}

close

define R4:Impliesproof E set Russell, set \

Russell, False R3

>> R4: [(Impliesproof((set(Russell) E set(Russell)),

>> False,[(R1_1:that (set(Russell) E set(Russell)))

>> => (Mp((set(Russell) E set(Russell)),

>> False,R1_1,comp2(Russell,set(Russell),

>> R1_1)):that False)])

>> :that ((set(Russell) E set(Russell)) Implies

>> False))]

>> {move 0}
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define R5:comp Russell, set Russell, R4

>> R5: [(comp(Russell,set(Russell),R4):that

>> (set(Russell) E set(Russell)))]

>> {move 0}

define R6: Mp E set Russell, set Russell, \

False R5 R4

>> R6: [(Mp((set(Russell) E set(Russell)),False,

>> R5,R4):that False)]

>> {move 0}

An important thing to notice about the crucial last few lines of the argu-
ment is that Lestrade is automatically expanding definitions as it type checks
these lines. I should add comments on each line pointing out the definitional
expansions.

I hope you enjoyed that!
Usually the proofs of implications are identified with actual functions

under the Curry-Howard isomorphism. My requirement that user defined
constructions have object output requires that objects Ifproof p q Ded are
obtained by a user-declared construction from constructions Ded, not iden-
tified with constructions. This is useful. There is no need for proofs of
implications p → q to have the same identity conditions as constructions
from proofs of p to proofs of q, and one can create situations where there are
“too many” distinct proofs if the proofs are actually constructions. [I seem
to recall that universal quantifiers over prop lead to some weirdness.]

This goes along with the idea that treating constructions as objects re-
quires one to declare constructions that effect this reduction. This casts a
kind of light on reasons behind the “paradoxes of set theory”.

Another limitation of the type system is that there are no disjoint union
types or existential types “built in” (though they certainly can be declared).
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In this Lestrade is similar to Automath (of which it is arguably a flavor). Es-
sentially the only built in type constructor of Lestrade is the dependent type
construction of constructions, of which the usual Curry-Howard implemen-
tations of implication and universal quantification are examples. This gives
the implementations of disjunction and the existential quantifier as logical
operations an indirect character [much as in Automath].

We have no constructive prejudices, though we observe that Lestrade sup-
ports constructive logic perfectly well with some modifications of the basic
declarations of logical operations. We are interested in a more constructive
approach for other reasons: we would like to make an obvious further ex-
tension and make Lestrade a programming environment in which programs
can be written which will operate effectively on the wide range of mathe-
matical objects which its rich [and easily user-extendible!] system of sorts
makes accessible. The rewriting features added recently go some way toward
implementing this.

Another class of philosophical objections to classical mathematics is ad-
dressed by our approach here. We have no sympathy with predicativist
scruples and we are very fond of second-order logic (a logic which supports
quantification over universals). One should note in the Lestrade book that we
showed how to quantify over untyped objects, then how to quantify uniformly
over any sort (in τ), then how to quantify universally over binary relations
(constructions!) from natural numbers to an arbitrary type. This last is an
example of second order quantification. We note that it appears that pred-
icativist scruples correspond in the Lestrade context to an unwillingness to
generalize over construction variables.

On the other hand, Lestrade does not automatically commit to the ability
to quantify over any type, as Automath does, at least in later versions, due
to the fact that constructions with output in prop or type are also typed
as instances of prop or type respectively. It appears to be possible to re-
strict oneself to the resources of first-order reasoning by suitable choice of
primitives.

The induction axiom on the natural number type defined in the book
works on predicates of natural numbers defined in any way that any exten-
sion of the book might provide for. We argue that the intended referent of
this type is the true type of natural numbers with a second-order axiomati-
zation. We intend to extend the book to present an axiomatization of Peano
arithmetic for contrast, for which a Lestrade specification of first-order logic
formulas over the Peano naturals would have to be given, and induction pro-
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vided only for properties of the Peano naturals expressible by such formulas.
One could then postulate other predicates of the Peano naturals which did
not respect this induction axiom, thus supporting reasoning about “nonstan-
dard” natural numbers which would not be possible for the type of natural
numbers currently described.

Similarly, I would like to present first-order versus second-order Zermelo
set theory and ZF.

Predicativist scruples seem to us to arise from a disagreement about the
nature of generality. For us, a construction is not an infinite table of values.
I do not need to be acquainted with every natural number n and compute
n2 +1 for each of them to be acquainted with the construction f(n) = n2 +1:
I have to know the method of computation. I do not need to know every
element of the domain D to be able to prove (∀x ∈ D : φ(x)): I need a
construction which given an x ∈ D will generate a proof of φ(x) (note the
dependent typing), and this construction may be a finite object in the same
sense that the expression n2 + 1 is.

I do not regard the notion “set of natural numbers” as vague because I
do not have a way of effectively listing all sets of natural numbers. A set
of natural numbers is a gadget which given a natural number input gives a
propositional output: I can recognize such an object without having a clue
as to how many such objects there are. I do not need any familiarity with
the full extent of the domain of sets of natural numbers to be able to prove a
universal statement about it. In particular, if I am given zero and a successor
operation in a domain which may be supposed to properly include (an im-
plementation of) the natural numbers, I can present a uniform proof that 3
(defined in the obvous way) belongs to every inductive set as a “finite gadget”.
And I can abstract from this to the notion that 3 is a natural number, defined
in the usual impredicative way. I do not regard universal quantifications as
infinitary conjunctions which require for their understanding that φ(x) be
previously understood for each x ∈ D: such an understanding does make
impredicative definitions circular. But note that it is obvious that we cannot
possibly be thinking that way about such sentences in practice: our under-
standing of universal quantification, which makes reasoning about it clearly
possible as a finite act, also dispels the apparently problematic character
of impredicative reasoning (without removing the signs that impredicative
definition is a very powerful move).

Another assumption which seems to underly the predicativist view is
that all constructions should be definable. We make no such assumption:
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as yet unknown constructions are not presumed to be constructed in any
definable way. Inductive arguments on the structure of our current resources
for defining constructions are not expected to capture features of all possible
constructions.

I’m well aware that philosophical speculations can be apparently vague
and unsatisfactory. One of our aims in designing Lestrade is to create an
environment in which one has as it were hands-on access to the full range
of mathematical constructions, in the incontrovertible sense that one can
actually design the objects and execute proofs of theorems about them. An
environment in which very general mathematical objects can be manipulated
precisely should be an aid to philosophical contemplation of them. The
claim that this environment does so implement the mathematical objects
and proofs is itself a definite philosophical claim, and interaction with the
software should make it easier to understand and evaluate this claim.

74



6 A moderately extensive Lestrade book

To see how this works, we present a moderately extensive development of
some basic logical and mathematical concepts in Lestrade. The considera-
tions in section 2 should give a general idea of what is going on: details of
syntax and command format in Lestrade are given in section 4, and one may
look forward to that point to see details of how the book is to be parsed and
executed.

This can be compared with text produced under Automath as in [6] and
[14]. The development of arithmetic by Jutting in [14] (following Landau’s
classic [15]) is available from Freek Wiedijk at the same place as his Automath
implementation, [8].

This book makes no use of the new implicit argument feature. I ought to
introduce some declarations with implicit arguments and examples of their
use (there is a short section of this kind above).

6.1 Propositional logic of conjunction and implication

Lestrade execution:

clearall

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

declare pp that p

>> pp: that p {move 1}
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declare qq that q

>> qq: that q {move 1}

We declare the conjunction operation on propositions.

Lestrade execution:

comment Declare the conjunction operator

postulate & p q : prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

We present the rule of conjunction introduction as a mathematical object,
taking the two propositions and proofs of each of them as arguments and
returning a proof of the conjunction.

Notice that while we always declare a construction with two arguments
using prefix notation, it will be displayed in infix notation (as long as its
first argument is not a construction), as conjunction is here. The parser can
handle mixfix notation for constructions with three or more arguments but
Lestrade does not choose to display things in this way.

Lestrade execution:

comment The rule of conjunction

postulate Andproof p q pp qq : that p & q
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>> Andproof: [(p_1:prop),(q_1:prop),(pp_1:that

>> p_1),(qq_1:that q_1) => (---:that (p_1

>> & q_1))]

>> {move 0}

declare rr that p & q

>> rr: that (p & q) {move 1}

Similarly, we present the rules of conjunction elimination (simplication)
as mathematical objects.

Lestrade execution:

comment The rules of simplification

postulate And1 p q rr : that p

>> And1: [(p_1:prop),(q_1:prop),(rr_1:that (p_1

>> & q_1)) => (---:that p_1)]

>> {move 0}

postulate And2 p q rr : that q

>> And2: [(p_1:prop),(q_1:prop),(rr_1:that (p_1

>> & q_1)) => (---:that q_1)]

>> {move 0}

We declare implication just as we declared conjunction.
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Lestrade execution:

comment The implication operator

postulate -> p q : prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

We develop the rule of conditional proof (the deduction theorem) as a
mathematical object. This is more exciting, because one of its inputs is a
construction.

Lestrade execution:

comment Development of conditional proof

open

declare pp2 that p

>> pp2: that p {move 2}

comment Ded below does not need p or q in its argument list

comment because they are not locally variables.

postulate Ded pp2 : that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}
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close

comment Note that once the move at which Ded was constructed closes,

comment it is a variable of desirable construction type

postulate Ifproof p q Ded : that p -> q

>> Ifproof: [(p_1:prop),(q_1:prop),(Ded_1:[(pp2_2:

>> that p_1) => (---:that q_1)])

>> => (---:that (p_1 -> q_1))]

>> {move 0}

We demonstrate our powers by actually proving a theorem (P → P ).

Lestrade execution:

comment Now, for fun, we will postulate an actual proof

open

declare pp2 that p

>> pp2: that p {move 2}

define Ppid pp2 : pp2

>> Ppid: [(pp2_1:that p) => (---:that p)]

>> {move 1}
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close

define Selfimp p : Ifproof p p Ppid

>> Selfimp: [(p_1:prop) => (Ifproof(p_1,p_1,

>> [(pp2_2:that p_1) => (pp2_2:that p_1)])

>> :that (p_1 -> p_1))]

>> {move 0}

comment Notice in the sort of Selfimp that Ppid has

comment been expanded as a lambda-term.

comment Develop the rule of modus ponens

declare ss that p -> q

>> ss: that (p -> q) {move 1}

We complete the basics of implication by defining the rule of modus po-
nens as a mathematical object.

Lestrade execution:

postulate Mp p q pp ss : that q

>> Mp: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (ss_1:that (p_1 -> q_1)) => (---:that

>> q_1)]

>> {move 0}
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6.2 The universal quantifier

In this section we do the basic development of the universal quantifier. After
this we will return to propositional logic and after that to a little more
quantification.

The argument of the universal quantifier is a construction, which requires
setup here similar to that for the conditional proof rule above.

Lestrade execution:

comment Opening an environment to set up definition of a predicate variable P

open

declare xx obj

>> xx: obj {move 2}

postulate P xx : prop

>> P: [(xx_1:obj) => (---:prop)]

>> {move 1}

close

comment Declaring the universal quantifier

postulate Forall P : prop

>> Forall: [(P_1:[(xx_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}
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We declare the rule of universal instantiation. It is worth noting that the
parser sometimes requires us to guard constructions appearing as arguments
with commas so that they will not be applied to what follows them (or what
is before them if they are capable of being read as infix or mixifx operators).

Lestrade execution:

comment Declaring the rule UI of universal instantiation

declare P2 that Forall P

>> P2: that Forall(P) {move 1}

declare x obj

>> x: obj {move 1}

postulate Ui P, P2 x : that P x

>> Ui: [(P_1:[(xx_2:obj) => (---:prop)]),

>> (P2_1:that Forall(P_1)),(x_1:obj) => (---:

>> that P_1(x_1))]

>> {move 0}

comment Note in the previous line that we follow P

comment with a comma: a construction argument may need to be

comment guarded with commas so it will not be read as applied.

comment Opening an environment to declare a construction
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comment that witnesses provability of a universal statement

We declare the rule of universal quantifier introduction. Note that the
second argument is a construction which takes an object x to a proof of
P (x), a dependently typed construction witnessing the truth of the universal
statement.

Lestrade execution:

open

declare u obj

>> u: obj {move 2}

postulate Q2 u : that P u

>> Q2: [(u_1:obj) => (---:that P(u_1))]

>> {move 1}

close

comment The rule of universal generalization

postulate Ug P, Q2 : that Forall P

>> Ug: [(P_1:[(xx_2:obj) => (---:prop)]),

>> (Q2_1:[(u_3:obj) => (---:that P_1(u_3))])

>> => (---:that Forall(P_1))]

>> {move 0}
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6.3 Negation (made classical) interacts with implica-
tion: proof of the contrapositive theorem

In this section we introduce ⊥ (??), a false statement, as a primitive, then
introduce logical negation and the biconditional as defined notions. We then
prove the contrapositive theorem and develop derived rules relating impli-
cation and negation. We make our logic classical by declaring the rule of
double negation, but a constructive approach is certainly possible.

Lestrade execution:

comment Develop rules for negation (which will be classical!)

comment and prove the contrapositive theorem.

comment The absurd proposition.

postulate ??:prop

>> ??: prop {move 0}

comment The negation operation.

define ~p: p -> ??

>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

>> {move 0}

define Existsdef P : ~Forall [x => ~(P x)] \
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>> Existsdef: [(P_1:[(xx_2:obj) => (---:prop)])

>> => (~(Forall([(x_3:obj) => (~(P_1(x_3)):

>> prop)]))

>> :prop)]

>> {move 0}

(The declaration of Existsdef is a test of the new ability to parse terms
with bound variables).

Here we introduce the primitive that makes our logic classical.

Lestrade execution:

comment We make our logic classical: the rule of double negation

declare maybe that ~ ~p

>> maybe: that ~(~(p)) {move 1}

postulate Dneg p maybe : that p

>> Dneg: [(p_1:prop),(maybe_1:that ~(~(p_1)))

>> => (---:that p_1)]

>> {move 0}

Here we show that contradictions in the usual sense of the term imply
the absurd primitive. It is worth noting that Lestrade does recognize that a
negative statement has the form of an implication and applies modus ponens
without any need for special action to unpack the definition of negation.

Lestrade execution:
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comment Contradictions are absurd.

declare nn that ~p

>> nn: that ~(p) {move 1}

define Contra p pp nn : Mp p ?? pp nn

>> Contra: [(p_1:prop),(pp_1:that p_1),(nn_1:

>> that ~(p_1)) => (Mp(p_1,??,pp_1,nn_1):

>> that ??)]

>> {move 0}

comment Notice that Lestrade does expand the definition

comment of the negation operation as we expect.

We start the development of the rule of negation introduction. We have
to do a little extra work, because the most direct approach gives us a rule in
which the output is typed in expanded form as an implication. But this can
be fixed.

Lestrade execution:

open

declare pp2 that p

>> pp2: that p {move 2}

86



postulate Negded pp2: that ??

>> Negded: [(pp2_1:that p) => (---:that ??)]

>> {move 1}

close

define Negintro1 p Negded : Ifproof p ?? \

Negded

>> Negintro1: [(p_1:prop),(Negded_1:[(pp2_2:

>> that p_1) => (---:that ??)])

>> => (Ifproof(p_1,??,Negded_1):that (p_1

>> -> ??))]

>> {move 0}

comment Negation introduction. But it is defective in actually

comment reporting an implication type. Let’s see if we can fix this.

open

declare proof1 that p -> ??

>> proof1: that (p -> ??) {move 2}

define Negproofid proof1:proof1

>> Negproofid: [(proof1_1:that (p -> ??))

>> => (---:that (p -> ??))]

>> {move 1}
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close

define Negfix p : Ifproof ((p -> ??), ~p \

, Negproofid)

>> Negfix: [(p_1:prop) => (Ifproof((p_1 -> ??),

>> ~(p_1),[(proof1_2:that (p_1 -> ??)) =>

>> (proof1_2:that (p_1 -> ??))])

>> :that ((p_1 -> ??) -> ~(p_1)))]

>> {move 0}

define Negintro p Negded : Mp ((p -> ??), \

~p , Negintro1 p Negded , Negfix p)

>> Negintro: [(p_1:prop),(Negded_1:[(pp2_2:that

>> p_1) => (---:that ??)])

>> => (Mp((p_1 -> ??),~(p_1),(p_1 Negintro1

>> Negded_1),Negfix(p_1)):that ~(p_1))]

>> {move 0}

comment I succeed in defining a proper negation introduction rule

comment using the defined symbol. This is important because of limitations

comment of circumstances under which Lestrade expands definitions.

We define the biconditional and introduce its rules. Of course since it
is a defined operation we do not need to declare any new primitives in this
connection.

Lestrade execution:
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comment We define the biconditional.

define <-> p q : (p -> q) & (q -> p)

>> <->: [(p_1:prop),(q_1:prop) => (((p_1 ->

>> q_1) & (q_1 -> p_1)):prop)]

>> {move 0}

The biconditional elimination rules are variations of modus ponens.

Lestrade execution:

comment Biconditional elimination rules

declare tt that p <-> q

>> tt: that (p <-> q) {move 1}

define Mpb1 p q pp tt : Mp p q pp, And1 ((p \

-> q), (q -> p), tt)

>> Mpb1: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (tt_1:that (p_1 <-> q_1)) => (Mp(p_1,q_1,

>> pp_1,And1((p_1 -> q_1),(q_1 -> p_1),tt_1)):

>> that q_1)]

>> {move 0}

define Mpb2 p q qq tt : Mp q p qq, And2((p->q), \

(q->p),tt)
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>> Mpb2: [(p_1:prop),(q_1:prop),(qq_1:that q_1),

>> (tt_1:that (p_1 <-> q_1)) => (Mp(q_1,p_1,

>> qq_1,And2((p_1 -> q_1),(q_1 -> p_1),tt_1)):

>> that p_1)]

>> {move 0}

comment In both of the last two commands, there are subtle parser issues.

comment Before And1, And2, the comma is needed to prevent Andi

comment from being read as an infix.

comment Because we enclose the argument (p->q) in parentheses

comment we need to enclose the entire argument list in parentheses

comment because a parenthesis after a prefixed construction is

comment always interpreted as enclosing an argument list,

comment not a term.

comment the classic Reductio ad Absurdum (which is not the same as neg intro!)

We develop the rule of reductio ad absurdum (which is not the same as
negation introduction, though both are carelessly called proof by contradic-
tion) and the rule that anything can be deduced from a falsehood.

Lestrade execution:

open

declare aa that ~p

>> aa: that ~(p) {move 2}
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postulate reductioarg aa : that ??

>> reductioarg: [(aa_1:that ~(p)) => (---:

>> that ??)]

>> {move 1}

close

define Reductio p reductioarg : Dneg p (Negintro \

~p reductioarg)

>> Reductio: [(p_1:prop),(reductioarg_1:[(aa_2:

>> that ~(p_1)) => (---:that ??)])

>> => ((p_1 Dneg (~(p_1) Negintro reductioarg_1)):

>> that p_1)]

>> {move 0}

comment Everything follows from the False!

declare huh that ??

>> huh: that ?? {move 1}

open

declare negp that ~p

>> negp: that ~(p) {move 2}
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define panick negp : huh

>> panick: [(negp_1:that ~(p)) => (---:that

>> ??)]

>> {move 1}

close

define Panic p huh : Reductio p panick

>> Panic: [(p_1:prop),(huh_1:that ??) => ((p_1

>> Reductio [(negp_2:that ~(p_1)) => (huh_1:

>> that ??)])

>> :that p_1)]

>> {move 0}

We develop the biconditional introduction rule. This is similar to the
rule of conditional proof. We once again have to do a little extra work to
get an output which is actually typed as a biconditional rather than as a
conjunction of implications.

Lestrade execution:

comment We develop the biconditional introduction rule.

comment In this environment we postulate reasoning

comment leading from p to q and q to p

open
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declare pp2 that p

>> pp2: that p {move 2}

postulate Ded1 pp2: that q

>> Ded1: [(pp2_1:that p) => (---:that q)]

>> {move 1}

declare qq2 that q

>> qq2: that q {move 2}

postulate Ded2 qq2: that p

>> Ded2: [(qq2_1:that q) => (---:that p)]

>> {move 1}

close

comment Here we prove an initial version,

comment defective in having expanded output

define Biintro1 p q, Ded1, Ded2: Andproof \

((p->q),(q->p), Ifproof p q Ded1, Ifproof \

q p Ded2)

>> Biintro1: [(p_1:prop),(q_1:prop),(Ded1_1:

>> [(pp2_2:that p_1) => (---:that q_1)]),
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>> (Ded2_1:[(qq2_3:that q_1) => (---:that

>> p_1)])

>> => (Andproof((p_1 -> q_1),(q_1 -> p_1),

>> Ifproof(p_1,q_1,Ded1_1),Ifproof(q_1,p_1,

>> Ded2_1)):that ((p_1 -> q_1) & (q_1 ->

>> p_1)))]

>> {move 0}

open

declare bb that p <-> q

>> bb: that (p <-> q) {move 2}

define biid bb:bb

>> biid: [(bb_1:that (p <-> q)) => (---:that

>> (p <-> q))]

>> {move 1}

close

comment We fix the defective version much as we fixed Negintro above

define Bifix p q: Ifproof (((p->q) & (q->p)), \

p<->q,biid)

>> Bifix: [(p_1:prop),(q_1:prop) => (Ifproof(((p_1

>> -> q_1) & (q_1 -> p_1)),(p_1 <-> q_1),

>> [(bb_2:that (p_1 <-> q_1)) => (bb_2:that

>> (p_1 <-> q_1))])

>> :that (((p_1 -> q_1) & (q_1 -> p_1)) ->
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>> (p_1 <-> q_1)))]

>> {move 0}

define Biintro p q, Ded1, Ded2: Mp (((p->q)&(q->p)), \

p<->q, Biintro1 (p, q, Ded1, Ded2),Bifix \

p q)

>> Biintro: [(p_1:prop),(q_1:prop),(Ded1_1:[(pp2_2:

>> that p_1) => (---:that q_1)]),

>> (Ded2_1:[(qq2_3:that q_1) => (---:that

>> p_1)])

>> => (Mp(((p_1 -> q_1) & (q_1 -> p_1)),(p_1

>> <-> q_1),Biintro1(p_1,q_1,Ded1_1,Ded2_1),

>> (p_1 Bifix q_1)):that (p_1 <-> q_1))]

>> {move 0}

We prove the contrapositive theorem. The proof follows the structure of
the proof using my favorite natural deduction strategy for propositional logic
exactly.

Lestrade execution:

comment We prove the contrapositive theorem,

comment (p->q) <-> (~q <-> ~p)

open

declare aa that p->q

>> aa: that (p -> q) {move 2}
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comment Our goal is to postulate a proof of ~q -> ~p

comment To do this, we need a construction from

comment proofs of ~q to proofs of ~p

open

declare bb that ~q

>> bb: that ~(q) {move 3}

comment Now our goal is to prove ~p.

comment For this we need a construction from

comment proofs of p to proofs of ??

open

declare cc that p

>> cc: that p {move 4}

comment prove q by m.p.

define dd cc: Mp p q cc aa

>> dd: [(cc_1:that p) => (---:that

>> q)]

>> {move 3}
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comment and we have a contradiction

define ee cc: Contra q (dd cc) bb

>> ee: [(cc_1:that p) => (---:that

>> ??)]

>> {move 3}

close

define ff bb : Negintro p ee

>> ff: [(bb_1:that ~(q)) => (---:that

>> ~(p))]

>> {move 2}

close

define gg aa: Ifproof ((~q),(~p),ff)

>> gg: [(aa_1:that (p -> q)) => (---:that

>> (~(q) -> ~(p)))]

>> {move 1}

comment Now we need the construction acting in

comment the other direction

declare hh that ~q -> ~p
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>> hh: that (~(q) -> ~(p)) {move 2}

comment Our goal is p->q so we want to assume p

open

declare ii that p

>> ii: that p {move 3}

comment Now our goal is q, but we will

comment actually aim for ~~q and so

comment assume ~q

open

declare jj that ~q

>> jj: that ~(q) {move 4}

comment Now use modus ponens to prove ~p

define kk jj : Mp(~q,~p,jj,hh)

>> kk: [(jj_1:that ~(q)) => (---:that

>> ~(p))]

>> {move 3}

comment Now we have a contradiction

98



define ll jj : Contra p ii kk jj

>> ll: [(jj_1:that ~(q)) => (---:that

>> ??)]

>> {move 3}

close

define mm ii : Negintro (~q , ll)

>> mm: [(ii_1:that p) => (---:that ~(~(q)))]

>> {move 2}

define nn2 ii : Dneg q mm ii

>> nn2: [(ii_1:that p) => (---:that q)]

>> {move 2}

close

define oo hh : Ifproof p q nn2

>> oo: [(hh_1:that (~(q) -> ~(p))) => (---:

>> that (p -> q))]

>> {move 1}

close
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define Contrapositive p q: Biintro ((p->q), \

(~q -> ~p),gg,oo)

>> Contrapositive: [(p_1:prop),(q_1:prop) =>

>> (Biintro((p_1 -> q_1),(~(q_1) -> ~(p_1)),

>> [(aa_2:that (p_1 -> q_1)) => (Ifproof(~(q_1),

>> ~(p_1),[(bb_3:that ~(q_1)) => ((p_1

>> Negintro [(cc_4:that p_1) => (Contra(q_1,

>> Mp(p_1,q_1,cc_4,aa_2),bb_3):that

>> ??)])

>> :that ~(p_1))])

>> :that (~(q_1) -> ~(p_1)))]

>> ,[(hh_5:that (~(q_1) -> ~(p_1))) => (Ifproof(p_1,

>> q_1,[(ii_6:that p_1) => ((q_1 Dneg

>> (~(q_1) Negintro [(jj_7:that ~(q_1))

>> => (Contra(p_1,ii_6,Mp(~(q_1),

>> ~(p_1),jj_7,hh_5)):that ??)]))

>> :that q_1)])

>> :that (p_1 -> q_1))])

>> :that ((p_1 -> q_1) <-> (~(q_1) -> ~(p_1))))]

>> {move 0}

comment Now is a good point to notice that

comment Lestrade definitely saves proof objects in detail.

We develop the derived logical rules which mix implication and negation,
modus tollens and proof by contrapositive.

Lestrade execution:

comment Develop indirect proof strategies for implication.

comment Modus Tollens
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declare negc that ~q

>> negc: that ~(q) {move 1}

define Mt p q ss negc : Mp(~q, ~p, negc , \

Mpb1 ((p -> q), (~q -> ~p),ss,Contrapositive \

p q))

>> Mt: [(p_1:prop),(q_1:prop),(ss_1:that (p_1

>> -> q_1)),(negc_1:that ~(q_1)) => (Mp(~(q_1),

>> ~(p_1),negc_1,Mpb1((p_1 -> q_1),(~(q_1)

>> -> ~(p_1)),ss_1,(p_1 Contrapositive q_1))):

>> that ~(p_1))]

>> {move 0}

comment Rule of contrapositive or indirect proof

open

declare negq that ~q

>> negq: that ~(q) {move 2}

postulate indarg negq : that ~p

>> indarg: [(negq_1:that ~(q)) => (---:that

>> ~(p))]

>> {move 1}
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close

define Indirect p q indarg : Mpb2 ((p->q), \

(~q -> ~p), Ifproof (~q, ~p,indarg), \

Contrapositive p q)

>> Indirect: [(p_1:prop),(q_1:prop),(indarg_1:

>> [(negq_2:that ~(q_1)) => (---:that ~(p_1))])

>> => (Mpb2((p_1 -> q_1),(~(q_1) -> ~(p_1)),

>> Ifproof(~(q_1),~(p_1),indarg_1),(p_1 Contrapositive

>> q_1)):that (p_1 -> q_1))]

>> {move 0}

6.4 The development of disjunction

We declare the disjunction operation and introduce its constructively valid
rules (addition and proof by cases) then derive the more powerful rules mixing
disjunction and negation.

Lestrade execution:

comment Now start the development of disjunction.

comment disjunction declared

postulate v p q:prop

>> v: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

comment basic disjunction introduction rules (addition)

postulate Addition1 p q pp: that p v q
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>> Addition1: [(p_1:prop),(q_1:prop),(pp_1:that

>> p_1) => (---:that (p_1 v q_1))]

>> {move 0}

postulate Addition2 p q qq:that p v q

>> Addition2: [(p_1:prop),(q_1:prop),(qq_1:that

>> q_1) => (---:that (p_1 v q_1))]

>> {move 0}

comment the basic disjunction elimination rule (proof by cases)

declare r prop

>> r: prop {move 1}

declare disj that p v q

>> disj: that (p v q) {move 1}

open

declare pp2 that p

>> pp2: that p {move 2}

postulate case1 pp2 : that r
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>> case1: [(pp2_1:that p) => (---:that r)]

>> {move 1}

declare qq2 that q

>> qq2: that q {move 2}

postulate case2 qq2 : that r

>> case2: [(qq2_1:that q) => (---:that r)]

>> {move 1}

close

postulate Cases p q r disj , case1 , case2 \

: that r

>> Cases: [(p_1:prop),(q_1:prop),(r_1:prop),

>> (disj_1:that (p_1 v q_1)),(case1_1:[(pp2_2:

>> that p_1) => (---:that r_1)]),

>> (case2_1:[(qq2_3:that q_1) => (---:that

>> r_1)])

>> => (---:that r_1)]

>> {move 0}

comment The rule of proof by cases really is quite complicated!

We prove the equivalences whcih support the rules mixing disjunction
and negation: these are P ∨Q↔ ¬P → Q and P ∨Q↔ ¬Q→ P .
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Lestrade execution:

comment Prove the basic equivalence theorem

comment which supports mixed rules for disjunction

comment The theorem is (p v q) <-> (~p -> q)

open

declare aa that p v q

>> aa: that (p v q) {move 2}

comment our goal is to prove ~p -> q

open

declare bb that ~p

>> bb: that ~(p) {move 3}

comment prove this by cases

open

declare hyp1 that p

>> hyp1: that p {move 4}

declare hyp2 that q
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>> hyp2: that q {move 4}

define casea2 hyp2 : hyp2

>> casea2: [(hyp2_1:that q) => (---:

>> that q)]

>> {move 3}

open

declare cc that ~q

>> cc: that ~(q) {move 5}

define panic cc : Contra p hyp1 \

bb

>> panic: [(cc_1:that ~(q)) => (---:

>> that ??)]

>> {move 4}

close

define casea1 hyp1 : Dneg q (Negintro \

~q panic)

>> casea1: [(hyp1_1:that p) => (---:

>> that q)]

>> {move 3}

106



close

define gotq bb : Cases p q q aa, casea1, \

casea2

>> gotq: [(bb_1:that ~(p)) => (---:that

>> q)]

>> {move 2}

close

define notpimpq aa : Ifproof ~p q gotq

>> notpimpq: [(aa_1:that (p v q)) => (---:

>> that (~(p) -> q))]

>> {move 1}

declare bb that ~p -> q

>> bb: that (~(p) -> q) {move 2}

open

declare cc that ~(p v q)

>> cc: that ~((p v q)) {move 3}
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comment this is a hypothesis for reduction ad absurdum

comment our aim is prove ~p so we can use the hypothesis bb

open

declare pp2 that p

>> pp2: that p {move 4}

define dd pp2 : Addition1 p q pp2

>> dd: [(pp2_1:that p) => (---:that

>> (p v q))]

>> {move 3}

define ee pp2 : Contra(p v q, dd \

pp2 , cc)

>> ee: [(pp2_1:that p) => (---:that

>> ??)]

>> {move 3}

close

define ff cc : Negintro p ee

>> ff: [(cc_1:that ~((p v q))) => (---:

>> that ~(p))]

>> {move 2}
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define gg2 cc : Mp (~p,q,ff cc,bb)

>> gg2: [(cc_1:that ~((p v q))) => (---:

>> that q)]

>> {move 2}

define hh cc : Addition2 p q gg2 cc

>> hh: [(cc_1:that ~((p v q))) => (---:

>> that (p v q))]

>> {move 2}

define ii cc : Contra (p v q,hh cc, \

cc)

>> ii: [(cc_1:that ~((p v q))) => (---:

>> that ??)]

>> {move 2}

close

define jj bb : Reductio (p v q,ii)

>> jj: [(bb_1:that (~(p) -> q)) => (---:that

>> (p v q))]

>> {move 1}

109



close

define Orthm p q : Biintro (p v q, ~p -> \

q, notpimpq, jj)

>> Orthm: [(p_1:prop),(q_1:prop) => (Biintro((p_1

>> v q_1),(~(p_1) -> q_1),[(aa_2:that (p_1

>> v q_1)) => (Ifproof(~(p_1),q_1,[(bb_3:

>> that ~(p_1)) => (Cases(p_1,q_1,q_1,

>> aa_2,[(hyp1_4:that p_1) => ((q_1

>> Dneg (~(q_1) Negintro [(cc_5:

>> that ~(q_1)) => (Contra(p_1,

>> hyp1_4,bb_3):that ??)]))

>> :that q_1)]

>> ,[(hyp2_6:that q_1) => (hyp2_6:that

>> q_1)])

>> :that q_1)])

>> :that (~(p_1) -> q_1))]

>> ,[(bb_7:that (~(p_1) -> q_1)) => (((p_1

>> v q_1) Reductio [(cc_8:that ~((p_1

>> v q_1))) => (Contra((p_1 v q_1),

>> Addition2(p_1,q_1,Mp(~(p_1),q_1,

>> (p_1 Negintro [(pp2_9:that p_1)

>> => (Contra((p_1 v q_1),Addition1(p_1,

>> q_1,pp2_9),cc_8):that ??)]),

>> bb_7)),cc_8):that ??)])

>> :that (p_1 v q_1))])

>> :that ((p_1 v q_1) <-> (~(p_1) -> q_1)))]

>> {move 0}

comment Prove the symmetric version p v q <-> ~q -> p

open
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declare aa that p v q

>> aa: that (p v q) {move 2}

define bb aa : Mpb1 (p v q,~p -> q,aa, \

Orthm p q)

>> bb: [(aa_1:that (p v q)) => (---:that

>> (~(p) -> q))]

>> {move 1}

define cc aa : Mpb1 (~p -> q, ~q -> ~ \

~ p,bb aa,Contrapositive ~p q)

>> cc: [(aa_1:that (p v q)) => (---:that

>> (~(q) -> ~(~(p))))]

>> {move 1}

open

declare negq that ~q

>> negq: that ~(q) {move 3}

define dd negq: Mp ~q ~ ~ p negq cc \

aa

>> dd: [(negq_1:that ~(q)) => (---:that

>> ~(~(p)))]

>> {move 2}
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define yesp negq : Dneg p dd negq

>> yesp: [(negq_1:that ~(q)) => (---:that

>> p)]

>> {move 2}

close

define ee aa : Ifproof ~q p yesp

>> ee: [(aa_1:that (p v q)) => (---:that

>> (~(q) -> p))]

>> {move 1}

declare ff that ~q -> p

>> ff: that (~(q) -> p) {move 2}

comment Prove that ~p implies q then use Orthm

open

declare negp that ~p

>> negp: that ~(p) {move 3}

comment prove q by reductio
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open

declare negq that ~q

>> negq: that ~(q) {move 4}

define pfollows negq : Mp ~q p negq \

ff

>> pfollows: [(negq_1:that ~(q)) =>

>> (---:that p)]

>> {move 3}

define disaster negq : Contra p, \

pfollows negq negp

>> disaster: [(negq_1:that ~(q)) =>

>> (---:that ??)]

>> {move 3}

close

define kk negp : Reductio q disaster

>> kk: [(negp_1:that ~(p)) => (---:that

>> q)]

>> {move 2}
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close

define ll ff : Ifproof ~p q kk

>> ll: [(ff_1:that (~(q) -> p)) => (---:that

>> (~(p) -> q))]

>> {move 1}

define mm ff : Mpb2 (p v q,~p -> q,ll \

ff,Orthm p q)

>> mm: [(ff_1:that (~(q) -> p)) => (---:that

>> (p v q))]

>> {move 1}

close

define Orthm2 p q : Biintro (p v q, ~q -> \

p, ee, mm)

>> Orthm2: [(p_1:prop),(q_1:prop) => (Biintro((p_1

>> v q_1),(~(q_1) -> p_1),[(aa_2:that (p_1

>> v q_1)) => (Ifproof(~(q_1),p_1,[(negq_3:

>> that ~(q_1)) => ((p_1 Dneg Mp(~(q_1),

>> ~(~(p_1)),negq_3,Mpb1((~(p_1) ->

>> q_1),(~(q_1) -> ~(~(p_1))),Mpb1((p_1

>> v q_1),(~(p_1) -> q_1),aa_2,(p_1

>> Orthm q_1)),(~(p_1) Contrapositive

>> q_1)))):that p_1)])

>> :that (~(q_1) -> p_1))]

>> ,[(ff_4:that (~(q_1) -> p_1)) => (Mpb2((p_1

>> v q_1),(~(p_1) -> q_1),Ifproof(~(p_1),

>> q_1,[(negp_5:that ~(p_1)) => ((q_1

>> Reductio [(negq_6:that ~(q_1)) =>
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>> (Contra(p_1,Mp(~(q_1),p_1,negq_6,

>> ff_4),negp_5):that ??)])

>> :that q_1)]),

>> (p_1 Orthm q_1)):that (p_1 v q_1))])

>> :that ((p_1 v q_1) <-> (~(q_1) -> p_1)))]

>> {move 0}

We derive stronger disjunction introduction rules and the rules of dis-
junctive syllogism.

Lestrade execution:

comment Develop the full dress disjunction introduction rule

comment reversal of numbering is due to proving the less preferred

open

declare negq that ~q

>> negq: that ~(q) {move 2}

postulate thusp negq : that p

>> thusp: [(negq_1:that ~(q)) => (---:that

>> p)]

>> {move 1}

close

define Disjintro p q thusp: Mpb2 (p v q, \
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~q -> p, Ifproof ~q p thusp, Orthm2 p q)

>> Disjintro: [(p_1:prop),(q_1:prop),(thusp_1:

>> [(negq_2:that ~(q_1)) => (---:that p_1)])

>> => (Mpb2((p_1 v q_1),(~(q_1) -> p_1),Ifproof(~(q_1),

>> p_1,thusp_1),(p_1 Orthm2 q_1)):that (p_1

>> v q_1))]

>> {move 0}

open

declare negp that ~p

>> negp: that ~(p) {move 2}

postulate thusq negp : that q

>> thusq: [(negp_1:that ~(p)) => (---:that

>> q)]

>> {move 1}

close

define Disjintro2 p q thusq: Mpb2 (p v q, \

~p -> q, Ifproof ~p q thusq, Orthm p q)

>> Disjintro2: [(p_1:prop),(q_1:prop),(thusq_1:

>> [(negp_2:that ~(p_1)) => (---:that q_1)])

>> => (Mpb2((p_1 v q_1),(~(p_1) -> q_1),Ifproof(~(p_1),

>> q_1,thusq_1),(p_1 Orthm q_1)):that (p_1
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>> v q_1))]

>> {move 0}

comment Rules of disjunctive syllogism

declare line1 that p v q

>> line1: that (p v q) {move 1}

declare line2 that ~q

>> line2: that ~(q) {move 1}

define Ds1 p q line1 line2 : Mp (~q, p, line2, \

Mpb1 (p v q, ~q -> p, line1, Orthm2 p q))

>> Ds1: [(p_1:prop),(q_1:prop),(line1_1:that

>> (p_1 v q_1)),(line2_1:that ~(q_1)) =>

>> (Mp(~(q_1),p_1,line2_1,Mpb1((p_1 v q_1),

>> (~(q_1) -> p_1),line1_1,(p_1 Orthm2 q_1))):

>> that p_1)]

>> {move 0}

declare line3 that p v q

>> line3: that (p v q) {move 1}
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declare line4 that ~p

>> line4: that ~(p) {move 1}

define Ds2 p q line3 line4 : Mp (~p, q, line4, \

Mpb1 (p v q, ~p -> q, line3, Orthm p q))

>> Ds2: [(p_1:prop),(q_1:prop),(line3_1:that

>> (p_1 v q_1)),(line4_1:that ~(p_1)) =>

>> (Mp(~(p_1),q_1,line4_1,Mpb1((p_1 v q_1),

>> (~(p_1) -> q_1),line3_1,(p_1 Orthm q_1))):

>> that q_1)]

>> {move 0}

6.5 The existential quantifier and a quantifier proof

In this section we introduce the existential quantifier and its primitive rules,
then prove the quantifier theorem (∀x : P (x) → Q(x)) ∧ (∀x : Q(x) →
R(x))→ (∀x : P (x)→ R(x)).

Lestrade execution:

comment The existential quantifier

postulate Exists P : prop

>> Exists: [(P_1:[(xx_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}

The existential quantifier introduction rule (EG).
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Lestrade execution:

comment the rule EG (existential introduction)

declare ev that P x

>> ev: that P(x) {move 1}

postulate Eg P, x ev : that Exists P

>> Eg: [(P_1:[(xx_2:obj) => (---:prop)]),

>> (x_1:obj),(ev_1:that P_1(x_1)) => (---:

>> that Exists(P_1))]

>> {move 0}

The existential quantifier elimination rule (EI). This is rather compli-
cated!

Lestrade execution:

comment the rule EI (existential elimination)

declare g prop

>> g: prop {move 1}

declare ex that Exists P

>> ex: that Exists(P) {move 1}

119



open

declare w obj

>> w: obj {move 2}

declare ev2 that P w

>> ev2: that P(w) {move 2}

postulate wi w ev2 : that g

>> wi: [(w_1:obj),(ev2_1:that P(w_1)) =>

>> (---:that g)]

>> {move 1}

close

postulate Ei P, g, ex, wi : that g

>> Ei: [(P_1:[(xx_2:obj) => (---:prop)]),

>> (g_1:prop),(ex_1:that Exists(P_1)),(wi_1:

>> [(w_3:obj),(ev2_3:that P_1(w_3)) => (---:

>> that g_1)])

>> => (---:that g_1)]

>> {move 0}

The proof of (∀x : P (x)→ Q(x)) ∧ (∀x : Q(x)→ R(x))→ (∀x : P (x)→
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R(x)). Notice that while we never write quantified statements with variable
binding constructions explicit, they do actually appear in the display of the
final result, because the identifiers used to specify the component construc-
tions pass out of scope.

Lestrade execution:

comment A quantifier proof

open

declare xx obj

>> xx: obj {move 2}

postulate Pp xx :prop

>> Pp: [(xx_1:obj) => (---:prop)]

>> {move 1}

postulate Qq xx : prop

>> Qq: [(xx_1:obj) => (---:prop)]

>> {move 1}

postulate Rr xx:prop

>> Rr: [(xx_1:obj) => (---:prop)]

>> {move 1}
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define Ss xx: (Pp xx) -> (Qq xx)

>> Ss: [(xx_1:obj) => (---:prop)]

>> {move 1}

define Tt xx: (Qq xx) -> (Rr xx)

>> Tt: [(xx_1:obj) => (---:prop)]

>> {move 1}

define Uu xx: (Pp xx) -> (Rr xx)

>> Uu: [(xx_1:obj) => (---:prop)]

>> {move 1}

declare ss2 that Forall Ss

>> ss2: that Forall(Ss) {move 2}

declare tt2 that Forall Tt

>> tt2: that Forall(Tt) {move 2}

comment Our goal is to prove Forall Uu

open
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declare yy obj

>> yy: obj {move 3}

comment Our goal is to show (Pp yy) -> (Rr yy)

open

declare ppyy that Pp yy

>> ppyy: that Pp(yy) {move 4}

define imp1 : Ui Ss, ss2 yy

>> imp1: [(---:that Ss(yy))]

>> {move 3}

define line5 ppyy: Mp (Pp yy, Qq \

yy, ppyy, imp1)

>> line5: [(ppyy_1:that Pp(yy)) =>

>> (---:that Qq(yy))]

>> {move 3}

define imp2 : Ui Tt, tt2 yy

>> imp2: [(---:that Tt(yy))]

>> {move 3}
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define line6 ppyy: Mp (Qq yy, Rr \

yy,line5 ppyy,imp2)

>> line6: [(ppyy_1:that Pp(yy)) =>

>> (---:that Rr(yy))]

>> {move 3}

close

define line7 yy: Ifproof (Pp yy, Rr \

yy,line6)

>> line7: [(yy_1:obj) => (---:that (Pp(yy_1)

>> -> Rr(yy_1)))]

>> {move 2}

close

define Univimp1 ss2 tt2: Ug Uu, line7

>> Univimp1: [(ss2_1:that Forall(Ss)),(tt2_1:

>> that Forall(Tt)) => (---:that Forall(Uu))]

>> {move 1}

declare conj1 that (Forall Ss) & (Forall \

Tt)

>> conj1: that (Forall(Ss) & Forall(Tt))

>> {move 2}
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define Univimp2 conj1 : Univimp1 \

(And1(Forall Ss, Forall Tt,conj1), And2(Forall \

Ss, Forall Tt,conj1))

>> Univimp2: [(conj1_1:that (Forall(Ss) &

>> Forall(Tt))) => (---:that Forall(Uu))]

>> {move 1}

close

define Univimp Pp, Qq, Rr : Ifproof \

((Forall Ss)&(Forall Tt),Forall Uu,Univimp2)

>> Univimp: [(Pp_1:[(xx_2:obj) => (---:prop)]),

>> (Qq_1:[(xx_3:obj) => (---:prop)]),

>> (Rr_1:[(xx_4:obj) => (---:prop)])

>> => (Ifproof((Forall([(xx_5:obj) => ((Pp_1(xx_5)

>> -> Qq_1(xx_5)):prop)])

>> & Forall([(xx_6:obj) => ((Qq_1(xx_6) ->

>> Rr_1(xx_6)):prop)]))

>> ,Forall([(xx_7:obj) => ((Pp_1(xx_7) ->

>> Rr_1(xx_7)):prop)]),

>> [(conj1_8:that (Forall([(xx_9:obj) =>

>> ((Pp_1(xx_9) -> Qq_1(xx_9)):prop)])

>> & Forall([(xx_10:obj) => ((Qq_1(xx_10)

>> -> Rr_1(xx_10)):prop)]))

>> ) => (Ug([(xx_11:obj) => ((Pp_1(xx_11)

>> -> Rr_1(xx_11)):prop)]

>> ,[(yy_12:obj) => (Ifproof(Pp_1(yy_12),

>> Rr_1(yy_12),[(ppyy_13:that Pp_1(yy_12))

>> => (Mp(Qq_1(yy_12),Rr_1(yy_12),

>> Mp(Pp_1(yy_12),Qq_1(yy_12),ppyy_13,

>> Ui([(xx_14:obj) => ((Pp_1(xx_14)
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>> -> Qq_1(xx_14)):prop)]

>> ,And1(Forall([(xx_15:obj) =>

>> ((Pp_1(xx_15) -> Qq_1(xx_15)):

>> prop)]),

>> Forall([(xx_16:obj) => ((Qq_1(xx_16)

>> -> Rr_1(xx_16)):prop)]),

>> conj1_8),yy_12)),Ui([(xx_17:obj)

>> => ((Qq_1(xx_17) -> Rr_1(xx_17)):

>> prop)]

>> ,And2(Forall([(xx_18:obj) =>

>> ((Pp_1(xx_18) -> Qq_1(xx_18)):

>> prop)]),

>> Forall([(xx_19:obj) => ((Qq_1(xx_19)

>> -> Rr_1(xx_19)):prop)]),

>> conj1_8),yy_12)):that Rr_1(yy_12))])

>> :that (Pp_1(yy_12) -> Rr_1(yy_12)))])

>> :that Forall([(xx_20:obj) => ((Pp_1(xx_20)

>> -> Rr_1(xx_20)):prop)]))

>> ])

>> :that ((Forall([(xx_21:obj) => ((Pp_1(xx_21)

>> -> Qq_1(xx_21)):prop)])

>> & Forall([(xx_22:obj) => ((Qq_1(xx_22)

>> -> Rr_1(xx_22)):prop)]))

>> -> Forall([(xx_23:obj) => ((Pp_1(xx_23)

>> -> Rr_1(xx_23)):prop)]))

>> )]

>> {move 0}

6.6 Sample declarations of theories of typed objects:
natural numbers and the simple theory of types

Lestrade is not exclusively devoted to constructing proof objects. We give
some very compact definitions for typed objects – natural numbers and the
sets of a model of the simple typed theory of sets.

Lestrade execution:
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comment Declarations of typed objects

comment The type of (true) natural numbers. The theory of these

comment objects will be second order arithmetic. Peano arithmetic

comment will be defined: it will be instructive how hard it is to do this.

The natural numbers as a type, the successor operation, and 1 are de-
clared.

Lestrade execution:

postulate Nat : type

>> Nat: type {move 0}

postulate 1 : in Nat

>> 1: in Nat {move 0}

declare n in Nat

>> n: in Nat {move 1}

postulate Succ n : in Nat

>> Succ: [(n_1:in Nat) => (---:in Nat)]

>> {move 0}
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The declaration of mathematical induction. A serious development would
include quantifiers over the natural numbers.

Lestrade execution:

open

declare n2 in Nat

>> n2: in Nat {move 2}

postulate Pn n2 : prop

>> Pn: [(n2_1:in Nat) => (---:prop)]

>> {move 1}

close

declare basis that Pn 1

>> basis: that Pn(1) {move 1}

open

declare k in Nat

>> k: in Nat {move 2}
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declare indhyp that Pn k

>> indhyp: that Pn(k) {move 2}

postulate indstep k indhyp : that Pn Succ \

k

>> indstep: [(k_1:in Nat),(indhyp_1:that

>> Pn(k_1)) => (---:that Pn(Succ(k_1)))]

>> {move 1}

close

postulate Induction n Pn, basis, indstep \

: that Pn n

>> Induction: [(n_1:in Nat),(Pn_1:[(n2_2:in

>> Nat) => (---:prop)]),

>> (basis_1:that Pn_1(1)),(indstep_1:[(k_3:

>> in Nat),(indhyp_3:that Pn_1(k_3)) =>

>> (---:that Pn_1(Succ(k_3)))])

>> => (---:that Pn_1(n_1))]

>> {move 0}

Equality and its rules are declared.

Lestrade execution:

comment We introduce the declarations for the properties
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comment of equality of natural numbers.

declare m in Nat

>> m: in Nat {move 1}

declare m2 in Nat

>> m2: in Nat {move 1}

postulate Eqn n m : prop

>> Eqn: [(n_1:in Nat),(m_1:in Nat) => (---:prop)]

>> {move 0}

Equality elimination (the rule of substitution)

Lestrade execution:

comment We develop the substitution rule (equality elimination)

declare eqev that Eqn m m2

>> eqev: that (m Eqn m2) {move 1}

declare pnpf that Pn m

>> pnpf: that Pn(m) {move 1}
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postulate Subs Pn, m m2 eqev pnpf: that Pn \

m2

>> Subs: [(Pn_1:[(n2_2:in Nat) => (---:prop)]),

>> (m_1:in Nat),(m2_1:in Nat),(eqev_1:that

>> (m_1 Eqn m2_1)),(pnpf_1:that Pn_1(m_1))

>> => (---:that Pn_1(m2_1))]

>> {move 0}

Equality introduction (indiscerniblity).

Lestrade execution:

comment We develop the equality introduction rule (Leibniz)

open

open

declare n3 in Nat

>> n3: in Nat {move 3}

postulate Pn2 n3: prop

>> Pn2: [(n3_1:in Nat) => (---:prop)]

>> {move 2}
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close

declare pnn that Pn2 n

>> pnn: that Pn2(n) {move 2}

postulate eqpf Pn2, pnn: that Pn2 m

>> eqpf: [(Pn2_1:[(n3_2:in Nat) => (---:prop)]),

>> (pnn_1:that Pn2_1(n)) => (---:that

>> Pn2_1(m))]

>> {move 1}

close

postulate Eqnproof n m, eqpf : that n Eqn \

m

>> Eqnproof: [(n_1:in Nat),(m_1:in Nat),(eqpf_1:

>> [(Pn2_2:[(n3_3:in Nat) => (---:prop)]),

>> (pnn_2:that Pn2_2(n_1)) => (---:that

>> Pn2_2(m_1))])

>> => (---:that (n_1 Eqn m_1))]

>> {move 0}

We prove the trivial theorem of reflexivity of equality.

Lestrade execution:

comment We test the equality introduction rule

comment by proving reflexivity of equality.
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open

open

declare n3 in Nat

>> n3: in Nat {move 3}

postulate Pn2 n3:prop

>> Pn2: [(n3_1:in Nat) => (---:prop)]

>> {move 2}

close

declare pnn that Pn2 n

>> pnn: that Pn2(n) {move 2}

define eqpftest Pn2, pnn: pnn

>> eqpftest: [(Pn2_1:[(n3_2:in Nat) => (---:

>> prop)]),

>> (pnn_1:that Pn2_1(n)) => (---:that

>> Pn2_1(n))]

>> {move 1}

close
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define Refln n : Eqnproof n n, eqpftest

>> Refln: [(n_1:in Nat) => (Eqnproof(n_1,n_1,

>> [(Pn2_2:[(n3_3:in Nat) => (---:prop)]),

>> (pnn_2:that Pn2_2(n_1)) => (pnn_2:that

>> Pn2_2(n_1))])

>> :that (n_1 Eqn n_1))]

>> {move 0}

We had to declare equality in order to declare the other two Peano axioms:
here they are.

Lestrade execution:

postulate Pa3 n : that ~(Succ n Eqn 1)

>> Pa3: [(n_1:in Nat) => (---:that ~((Succ(n_1)

>> Eqn 1)))]

>> {move 0}

postulate Pa4 n m : that (Succ n Eqn Succ \

m) -> n Eqn m

>> Pa4: [(n_1:in Nat),(m_1:in Nat) => (---:that

>> ((Succ(n_1) Eqn Succ(m_1)) -> (n_1 Eqn

>> m_1)))]

>> {move 0}

comment These definitions are by no means exhaustive. One wants

comment to declare quantifiers over natural numbers for example.
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Here are a set of very economical declarations for the simple type theory of
sets. Once again, I have not declared the quantifiers that are surely wanted.

Lestrade execution:

comment Declarations for second order type theory.

I could declare the types without using natural numbers at all, but since
I have them I will use them.

Lestrade execution:

postulate level n : type

>> level: [(n_1:in Nat) => (---:type)]

>> {move 0}

comment level n is what we usually call type n.

comment The bottom type will be type 1.

declare n3 in Nat

>> n3: in Nat {move 1}

declare x10 in level n3

>> x10: in level(n3) {move 1}

declare y10 in level Succ n3
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>> y10: in level(Succ(n3)) {move 1}

Here is the membership relation. It is ternary: we must unavoidably put
a natural number first to indicate the type of the element.

Lestrade execution:

comment Declare the membership relation (with a type argument)

postulate E n3 x10 y10 : prop

>> E: [(n3_1:in Nat),(x10_1:in level(n3_1)),

>> (y10_1:in level(Succ(n3_1))) => (---:prop)]

>> {move 0}

Here is the set abstract primitive, taking predicates of type n objects to
sets of type n+ 1.

Lestrade execution:

comment Declare the set abstract constructor

open

declare x11 in level n3

>> x11: in level(n3) {move 2}

postulate Pt x11 : prop
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>> Pt: [(x11_1:in level(n3)) => (---:prop)]

>> {move 1}

close

Here are the comprehension axioms, declared in a most economical way.

Lestrade execution:

comment Declare the comprehension axioms

postulate setof n3 Pt : in level Succ n3

>> setof: [(n3_1:in Nat),(Pt_1:[(x11_2:in level(n3_1))

>> => (---:prop)])

>> => (---:in level(Succ(n3_1)))]

>> {move 0}

declare compev1 that E(n3,x10,setof n3 Pt)

>> compev1: that E(n3,x10,(n3 setof Pt)) {move

>> 1}

postulate Comp1 n3 x10, Pt : that Pt x10

>> Comp1: [(n3_1:in Nat),(x10_1:in level(n3_1)),

>> (Pt_1:[(x11_2:in level(n3_1)) => (---:
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>> prop)])

>> => (---:that Pt_1(x10_1))]

>> {move 0}

declare compev2 that Pt x10

>> compev2: that Pt(x10) {move 1}

postulate Comp2 n3 x10, Pt : that E(n3,x10, \

setof n3 Pt)

>> Comp2: [(n3_1:in Nat),(x10_1:in level(n3_1)),

>> (Pt_1:[(x11_2:in level(n3_1)) => (---:

>> prop)])

>> => (---:that E(n3_1,x10_1,(n3_1 setof

>> Pt_1)))]

>> {move 0}

Here is the extensionality axiom, whose force is that things having the
same elements (and belonging to a successor type) themselves belong to the
same sets. In the presence of comprehension, this is enough: objects with the
same elements will thus be indiscernible. Of course a definition of equality
(and definitions of quantifiers) would appear in a full treatment.

Lestrade execution:

comment Declare the extensionality axiom

declare xx10 in level Succ n3

>> xx10: in level(Succ(n3)) {move 1}
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declare yy10 in level Succ n3

>> yy10: in level(Succ(n3)) {move 1}

declare ww10 in level Succ(Succ n3)

>> ww10: in level(Succ(Succ(n3))) {move 1}

declare xinw that (Succ n3) E xx10 ww10

>> xinw: that E(Succ(n3),xx10,ww10) {move 1}

open

declare z11 in level n3

>> z11: in level(n3) {move 2}

declare zinx that n3 E z11 xx10

>> zinx: that E(n3,z11,xx10) {move 2}

declare ziny that n3 E z11 yy10

>> ziny: that E(n3,z11,yy10) {move 2}
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postulate xincy z11 zinx : that n3 E z11 \

yy10

>> xincy: [(z11_1:in level(n3)),(zinx_1:that

>> E(n3,z11_1,xx10)) => (---:that E(n3,

>> z11_1,yy10))]

>> {move 1}

postulate yincx z11 ziny : that n3 E z11 \

xx10

>> yincx: [(z11_1:in level(n3)),(ziny_1:that

>> E(n3,z11_1,yy10)) => (---:that E(n3,

>> z11_1,xx10))]

>> {move 1}

close

postulate Extensionality n3 xx10 yy10 ww10, \

xinw, xincy, yincx : that (Succ n3) E yy10 \

ww10

>> Extensionality: [(n3_1:in Nat),(xx10_1:in

>> level(Succ(n3_1))),(yy10_1:in level(Succ(n3_1))),

>> (ww10_1:in level(Succ(Succ(n3_1)))),(xinw_1:

>> that E(Succ(n3_1),xx10_1,ww10_1)),(xincy_1:

>> [(z11_2:in level(n3_1)),(zinx_2:that E(n3_1,

>> z11_2,xx10_1)) => (---:that E(n3_1,

>> z11_2,yy10_1))]),

>> (yincx_1:[(z11_3:in level(n3_1)),(ziny_3:

>> that E(n3_1,z11_3,yy10_1)) => (---:
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>> that E(n3_1,z11_3,xx10_1))])

>> => (---:that E(Succ(n3_1),yy10_1,ww10_1))]

>> {move 0}

6.7 Quantifiers over general types

In this section we present the primitives supporting quantification over all
types of sort type. Quantifiers over the sort type itself could be introduced
independently but would of course be more dangerous (it would be easier to
utter paradoxes). These tools could be used to define quantifiers over the
natural numbers and over each of the levels of type theory without any need
for new primitives.

This is an illustration of the fact that we have a general ability to postulate
and define operations on a domain of types.

The text is cloned from the text for the quantifiers over the sort obj

above, and the comments have mostly not been revised to reflect the changes
in identifiers.

Lestrade execution:

comment Declaring the universal quantifier for general types.

clearcurrent

declare tau type

>> tau: type {move 1}

open

declare uu in tau

>> uu: in tau {move 2}
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postulate Ptt uu : prop

>> Ptt: [(uu_1:in tau) => (---:prop)]

>> {move 1}

close

postulate Forallt tau Ptt: prop

>> Forallt: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)])

>> => (---:prop)]

>> {move 0}

comment Declaring the rule UI of universal instantiation (for general types)

declare Ptt2 that Forallt tau Ptt

>> Ptt2: that (tau Forallt Ptt) {move 1}

declare xt in tau

>> xt: in tau {move 1}

postulate Uit tau Ptt, Ptt2 xt : that Ptt \

xt
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>> Uit: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (Ptt2_1:that (tau_1 Forallt Ptt_1)),(xt_1:

>> in tau_1) => (---:that Ptt_1(xt_1))]

>> {move 0}

comment Note in the previous line that we follow P

comment with a comma: a construction argument may need to be

comment guarded with commas so it will not be read as applied.

comment Opening an environment to declare a construction

comment that witnesses provability of a universal statement

open

declare ut in tau

>> ut: in tau {move 2}

postulate Qt2 ut : that Ptt ut

>> Qt2: [(ut_1:in tau) => (---:that Ptt(ut_1))]

>> {move 1}

close

comment The rule of universal generalization (for general types)

postulate Ugt tau Ptt, Qt2 : that Forallt \
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tau Ptt

>> Ugt: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (Qt2_1:[(ut_3:in tau_1) => (---:that Ptt_1(ut_3))])

>> => (---:that (tau_1 Forallt Ptt_1))]

>> {move 0}

comment The existential quantifier (for general types)

postulate Existst tau Ptt : prop

>> Existst: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)])

>> => (---:prop)]

>> {move 0}

comment the rule EG (existential introduction) (for general types)

declare evt that Ptt xt

>> evt: that Ptt(xt) {move 1}

postulate Egt tau Ptt, xt evt : that Existst \

tau Ptt

>> Egt: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (xt_1:in tau_1),(evt_1:that Ptt_1(xt_1))

>> => (---:that (tau_1 Existst Ptt_1))]

>> {move 0}
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comment the rule EI (existential elimination) (for general types)

declare gt prop

>> gt: prop {move 1}

declare ext that Existst tau Ptt

>> ext: that (tau Existst Ptt) {move 1}

open

declare wt in tau

>> wt: in tau {move 2}

declare evt2 that Ptt wt

>> evt2: that Ptt(wt) {move 2}

postulate wit wt evt2 : that gt

>> wit: [(wt_1:in tau),(evt2_1:that Ptt(wt_1))

>> => (---:that gt)]

>> {move 1}
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close

postulate Eit tau Ptt, gt, ext, wit : that \

gt

>> Eit: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (gt_1:prop),(ext_1:that (tau_1 Existst

>> Ptt_1)),(wit_1:[(wt_3:in tau_1),(evt2_3:

>> that Ptt_1(wt_3)) => (---:that gt_1)])

>> => (---:that gt_1)]

>> {move 0}

6.8 Equality and the definite description operator for
untyped and typed objects

Lestrade execution:

comment Equality uniqueness and definite description

open

declare x17 obj

>> x17: obj {move 2}

postulate P x17 prop

>> P: [(x17_1:obj) => (---:prop)]

>> {move 1}
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close

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

comment Equality of untyped objects

postulate = x y : prop

>> =: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

comment Develop equality introduction rule (indiscernibility)

open

open

declare x2 obj

>> x2: obj {move 3}

postulate Peq2 x2: prop
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>> Peq2: [(x2_1:obj) => (---:prop)]

>> {move 2}

close

declare pxev that Peq2 x

>> pxev: that Peq2(x) {move 2}

postulate pyev Peq2, pxev : that Peq2 \

y

>> pyev: [(Peq2_1:[(x2_2:obj) => (---:prop)]),

>> (pxev_1:that Peq2_1(x)) => (---:that

>> Peq2_1(y))]

>> {move 1}

close

postulate Eqintro x y pyev :that x = y

>> Eqintro: [(x_1:obj),(y_1:obj),(pyev_1:[(Peq2_2:

>> [(x2_3:obj) => (---:prop)]),

>> (pxev_2:that Peq2_2(x_1)) => (---:that

>> Peq2_2(y_1))])

>> => (---:that (x_1 = y_1))]

>> {move 0}

comment Construct equality elimination rule (substitution)
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declare xyeqev that x = y

>> xyeqev: that (x = y) {move 1}

declare pxev that P x

>> pxev: that P(x) {move 1}

postulate Eqelim P, x y xyeqev pxev : that \

P y

>> Eqelim: [(P_1:[(x17_2:obj) => (---:prop)]),

>> (x_1:obj),(y_1:obj),(xyeqev_1:that (x_1

>> = y_1)),(pxev_1:that P_1(x_1)) => (---:

>> that P_1(y_1))]

>> {move 0}

comment The same rules for equality, adapted to general types

declare yt in tau

>> yt: in tau {move 1}

postulate eqt tau xt yt : prop

>> eqt: [(tau_1:type),(xt_1:in tau_1),(yt_1:

>> in tau_1) => (---:prop)]

>> {move 0}
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comment Develop equality introduction rule (indiscernibility)

open

open

declare x2 in tau

>> x2: in tau {move 3}

postulate Peqt2 x2: prop

>> Peqt2: [(x2_1:in tau) => (---:prop)]

>> {move 2}

close

declare pxevt that Peqt2 xt

>> pxevt: that Peqt2(xt) {move 2}

postulate pyevt Peqt2, pxevt : that Peqt2 \

yt

>> pyevt: [(Peqt2_1:[(x2_2:in tau) => (---:

>> prop)]),

>> (pxevt_1:that Peqt2_1(xt)) => (---:

>> that Peqt2_1(yt))]

>> {move 1}
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close

postulate Eqintrot tau xt yt pyevt :that \

tau eqt xt yt

>> Eqintrot: [(tau_1:type),(xt_1:in tau_1),(yt_1:

>> in tau_1),(pyevt_1:[(Peqt2_2:[(x2_3:in

>> tau_1) => (---:prop)]),

>> (pxevt_2:that Peqt2_2(xt_1)) => (---:

>> that Peqt2_2(yt_1))])

>> => (---:that eqt(tau_1,xt_1,yt_1))]

>> {move 0}

comment Construct equality elimination rule (substitution)

declare xyeqevt that tau eqt xt yt

>> xyeqevt: that eqt(tau,xt,yt) {move 1}

declare pxevt that Ptt xt

>> pxevt: that Ptt(xt) {move 1}

postulate Eqelimt tau Ptt, xt yt xyeqevt \

pxevt : that Ptt yt

>> Eqelimt: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (xt_1:in tau_1),(yt_1:in tau_1),(xyeqevt_1:

>> that eqt(tau_1,xt_1,yt_1)),(pxevt_1:that

>> Ptt_1(xt_1)) => (---:that Ptt_1(yt_1))]
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>> {move 0}

comment The definite description operator

declare atleast1 that Exists P

>> atleast1: that Exists(P) {move 1}

open

declare x1 obj

>> x1: obj {move 2}

declare x2 obj

>> x2: obj {move 2}

declare thatpx1 that P x1

>> thatpx1: that P(x1) {move 2}

declare thatpx2 that P x2

>> thatpx2: that P(x2) {move 2}
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postulate atmost1 x1 x2 thatpx1 thatpx2 \

: that x1 = x2

>> atmost1: [(x1_1:obj),(x2_1:obj),(thatpx1_1:

>> that P(x1_1)),(thatpx2_1:that P(x2_1))

>> => (---:that (x1_1 = x2_1))]

>> {move 1}

close

postulate The P, atleast1 atmost1 : obj

>> The: [(P_1:[(x17_2:obj) => (---:prop)]),

>> (atleast1_1:that Exists(P_1)),(atmost1_1:

>> [(x1_3:obj),(x2_3:obj),(thatpx1_3:that

>> P_1(x1_3)),(thatpx2_3:that P_1(x2_3))

>> => (---:that (x1_3 = x2_3))])

>> => (---:obj)]

>> {move 0}

postulate Theprop P, atleast1 atmost1 : that \

P The P, atleast1 atmost1

>> Theprop: [(P_1:[(x17_2:obj) => (---:prop)]),

>> (atleast1_1:that Exists(P_1)),(atmost1_1:

>> [(x1_3:obj),(x2_3:obj),(thatpx1_3:that

>> P_1(x1_3)),(thatpx2_3:that P_1(x2_3))

>> => (---:that (x1_3 = x2_3))])

>> => (---:that P_1(The(P_1,atleast1_1,atmost1_1)))]

>> {move 0}

comment The definite description operator (for general types)
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declare atleastt1 that Existst tau Ptt

>> atleastt1: that (tau Existst Ptt) {move 1}

open

declare x1 in tau

>> x1: in tau {move 2}

declare x2 in tau

>> x2: in tau {move 2}

declare thatpx1 that Ptt x1

>> thatpx1: that Ptt(x1) {move 2}

declare thatpx2 that Ptt x2

>> thatpx2: that Ptt(x2) {move 2}

postulate atmostt1 x1 x2 thatpx1 thatpx2 \

: that tau eqt x1 x2

>> atmostt1: [(x1_1:in tau),(x2_1:in tau),

>> (thatpx1_1:that Ptt(x1_1)),(thatpx2_1:

154



>> that Ptt(x2_1)) => (---:that eqt(tau,

>> x1_1,x2_1))]

>> {move 1}

close

postulate Thet tau Ptt, atleastt1 atmostt1 \

: in tau

>> Thet: [(tau_1:type),(Ptt_1:[(uu_2:in tau_1)

>> => (---:prop)]),

>> (atleastt1_1:that (tau_1 Existst Ptt_1)),

>> (atmostt1_1:[(x1_3:in tau_1),(x2_3:in

>> tau_1),(thatpx1_3:that Ptt_1(x1_3)),

>> (thatpx2_3:that Ptt_1(x2_3)) => (---:

>> that eqt(tau_1,x1_3,x2_3))])

>> => (---:in tau_1)]

>> {move 0}

postulate Thepropt tau Ptt, atleastt1 atmostt1 \

: that Ptt Thet tau Ptt, atleastt1 \

atmostt1

>> Thepropt: [(tau_1:type),(Ptt_1:[(uu_2:in

>> tau_1) => (---:prop)]),

>> (atleastt1_1:that (tau_1 Existst Ptt_1)),

>> (atmostt1_1:[(x1_3:in tau_1),(x2_3:in

>> tau_1),(thatpx1_3:that Ptt_1(x1_3)),

>> (thatpx2_3:that Ptt_1(x2_3)) => (---:

>> that eqt(tau_1,x1_3,x2_3))])

>> => (---:that Ptt_1(Thet(tau_1,Ptt_1,atleastt1_1,

>> atmostt1_1)))]

>> {move 0}
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6.9 Declarations for complex type theories, up to the
level of bootstrapping Lestrade’s own construction
sorts

The declarations here will support reasoning in Church’s simple type theory
of [2] (or modern variations); they are further augmented with dependent
product and construction types of a sort which would be required to emulate
Lestrade’s own system of construction sorts.

Lestrade execution:

% Church’s type theory

% one point type

postulate One type

>> One: type {move 0}

postulate Unique : in One

>> Unique: in One {move 0}

declare xx1 in One

>> xx1: in One {move 1}

postulate Oneproof xx1 : that One eqt xx1 \

Unique
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>> Oneproof: [(xx1_1:in One) => (---:that eqt(One,

>> xx1_1,Unique))]

>> {move 0}

% cartesian product construction

declare sigma type

>> sigma: type {move 1}

postulate X tau sigma : type

>> X: [(tau_1:type),(sigma_1:type) => (---:type)]

>> {move 0}

declare xt2 in tau

>> xt2: in tau {move 1}

declare ys in sigma

>> ys: in sigma {move 1}

postulate pair tau sigma xt2 ys : in tau \

X sigma

>> pair: [(tau_1:type),(sigma_1:type),(xt2_1:
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>> in tau_1),(ys_1:in sigma_1) => (---:in

>> (tau_1 X sigma_1))]

>> {move 0}

declare zp in tau X sigma

>> zp: in (tau X sigma) {move 1}

postulate pi1 tau sigma zp : in tau

>> pi1: [(tau_1:type),(sigma_1:type),(zp_1:in

>> (tau_1 X sigma_1)) => (---:in tau_1)]

>> {move 0}

postulate pi2 tau sigma zp : in sigma

>> pi2: [(tau_1:type),(sigma_1:type),(zp_1:in

>> (tau_1 X sigma_1)) => (---:in sigma_1)]

>> {move 0}

postulate Xexact tau sigma zp : that (tau \

X sigma) eqt zp, pair tau sigma (pi1 tau \

sigma zp) (pi2 tau sigma zp)

>> Xexact: [(tau_1:type),(sigma_1:type),(zp_1:

>> in (tau_1 X sigma_1)) => (---:that eqt((tau_1

>> X sigma_1),zp_1,pair(tau_1,sigma_1,pi1(tau_1,

>> sigma_1,zp_1),pi2(tau_1,sigma_1,zp_1))))]

>> {move 0}
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% power set type constructor (use this to build bool from one point type)

postulate Pow tau type

>> Pow: [(tau_1:type) => (---:type)]

>> {move 0}

open

declare xt3 in tau

>> xt3: in tau {move 2}

postulate tausub xt3 : prop

>> tausub: [(xt3_1:in tau) => (---:prop)]

>> {move 1}

close

postulate Setc tau tausub : in Pow tau

>> Setc: [(tau_1:type),(tausub_1:[(xt3_2:in

>> tau_1) => (---:prop)])

>> => (---:in Pow(tau_1))]

>> {move 0}

declare Ac in Pow tau
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>> Ac: in Pow(tau) {move 1}

postulate Ec tau xt Ac :prop

>> Ec: [(tau_1:type),(xt_1:in tau_1),(Ac_1:in

>> Pow(tau_1)) => (---:prop)]

>> {move 0}

declare ev1 that tausub xt

>> ev1: that tausub(xt) {move 1}

declare ev2 that tau Ec xt tau Setc tausub

>> ev2: that Ec(tau,xt,(tau Setc tausub)) {move

>> 1}

postulate Compc1 tau xt ,tausub, ev1 : that \

tau Ec xt tau Setc tausub

>> Compc1: [(tau_1:type),(xt_1:in tau_1),(tausub_1:

>> [(xt3_2:in tau_1) => (---:prop)]),

>> (ev1_1:that tausub_1(xt_1)) => (---:that

>> Ec(tau_1,xt_1,(tau_1 Setc tausub_1)))]

>> {move 0}

160



postulate Compc2 tau xt ,tausub, ev2 : that \

tausub xt

>> Compc2: [(tau_1:type),(xt_1:in tau_1),(tausub_1:

>> [(xt3_2:in tau_1) => (---:prop)]),

>> (ev2_1:that Ec(tau_1,xt_1,(tau_1 Setc

>> tausub_1))) => (---:that tausub_1(xt_1))]

>> {move 0}

declare Bc in Pow tau

>> Bc: in Pow(tau) {move 1}

open

declare xt1 in tau

>> xt1: in tau {move 2}

declare xtina1 that tau Ec xt1 Ac

>> xtina1: that Ec(tau,xt1,Ac) {move 2}

postulate aincb xt1 xtina1 : that tau \

Ec xt1 Bc

>> aincb: [(xt1_1:in tau),(xtina1_1:that

>> Ec(tau,xt1_1,Ac)) => (---:that Ec(tau,

>> xt1_1,Bc))]

>> {move 1}
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declare xtinb1 that tau Ec xt1 Bc

>> xtinb1: that Ec(tau,xt1,Bc) {move 2}

postulate binca xt1 xtinb1 : that tau \

Ec xt1 Ac

>> binca: [(xt1_1:in tau),(xtinb1_1:that

>> Ec(tau,xt1_1,Bc)) => (---:that Ec(tau,

>> xt1_1,Ac))]

>> {move 1}

close

postulate Extc tau Ac Bc , aincb, binca : \

that (Pow tau) eqt Ac Bc

>> Extc: [(tau_1:type),(Ac_1:in Pow(tau_1)),

>> (Bc_1:in Pow(tau_1)),(aincb_1:[(xt1_2:

>> in tau_1),(xtina1_2:that Ec(tau_1,xt1_2,

>> Ac_1)) => (---:that Ec(tau_1,xt1_2,

>> Bc_1))]),

>> (binca_1:[(xt1_3:in tau_1),(xtinb1_3:that

>> Ec(tau_1,xt1_3,Bc_1)) => (---:that

>> Ec(tau_1,xt1_3,Ac_1))])

>> => (---:that eqt(Pow(tau_1),Ac_1,Bc_1))]

>> {move 0}

% arrow type constructor
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postulate ==> tau sigma : type

>> ==>: [(tau_1:type),(sigma_1:type) => (---:

>> type)]

>> {move 0}

open

declare var in tau

>> var: in tau {move 2}

postulate lambdabody var : in sigma

>> lambdabody: [(var_1:in tau) => (---:in

>> sigma)]

>> {move 1}

close

postulate Lambda tau sigma lambdabody : in \

tau ==> sigma

>> Lambda: [(tau_1:type),(sigma_1:type),(lambdabody_1:

>> [(var_2:in tau_1) => (---:in sigma_1)])

>> => (---:in (tau_1 ==> sigma_1))]

>> {move 0}

declare Fc in tau ==> sigma
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>> Fc: in (tau ==> sigma) {move 1}

declare Gc in tau ==> sigma

>> Gc: in (tau ==> sigma) {move 1}

declare xt4 in tau

>> xt4: in tau {move 1}

postulate Applyc tau sigma Fc, xt4 : in sigma

>> Applyc: [(tau_1:type),(sigma_1:type),(Fc_1:

>> in (tau_1 ==> sigma_1)),(xt4_1:in tau_1)

>> => (---:in sigma_1)]

>> {move 0}

postulate Beta tau sigma lambdabody, xt4 \

: that sigma eqt Applyc tau sigma (Lambda \

tau sigma lambdabody) xt4 lambdabody \

xt4

>> Beta: [(tau_1:type),(sigma_1:type),(lambdabody_1:

>> [(var_2:in tau_1) => (---:in sigma_1)]),

>> (xt4_1:in tau_1) => (---:that eqt(sigma_1,

>> Applyc(tau_1,sigma_1,Lambda(tau_1,sigma_1,

>> lambdabody_1),xt4_1),lambdabody_1(xt4_1)))]

>> {move 0}
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% There remains extensionality for arrow types

open

declare xt5 in tau

>> xt5: in tau {move 2}

postulate sameval xt5 : that sigma \

eqt (Applyc tau sigma Fc xt5) (Applyc \

tau sigma Gc xt5)

>> sameval: [(xt5_1:in tau) => (---:that

>> eqt(sigma,Applyc(tau,sigma,Fc,xt5_1),

>> Applyc(tau,sigma,Gc,xt5_1)))]

>> {move 1}

close

postulate Extfnc tau sigma Fc Gc sameval \

: that (tau ==> sigma) eqt Fc Gc

>> Extfnc: [(tau_1:type),(sigma_1:type),(Fc_1:

>> in (tau_1 ==> sigma_1)),(Gc_1:in (tau_1

>> ==> sigma_1)),(sameval_1:[(xt5_2:in tau_1)

>> => (---:that eqt(sigma_1,Applyc(tau_1,

>> sigma_1,Fc_1,xt5_2),Applyc(tau_1,sigma_1,

>> Gc_1,xt5_2)))])

>> => (---:that eqt((tau_1 ==> sigma_1),Fc_1,

>> Gc_1))]

>> {move 0}
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% add dependent product and dependent construction types, which

% allow internalization of construction sorts of the Lestrade framework.

% declarations for dependent types

open

declare ys5 in tau

>> ys5: in tau {move 2}

postulate Rhofun ys5 : type

>> Rhofun: [(ys5_1:in tau) => (---:type)]

>> {move 1}

close

% dependent product construction

postulate Xx tau Rhofun : type

>> Xx: [(tau_1:type),(Rhofun_1:[(ys5_2:in tau_1)

>> => (---:type)])

>> => (---:type)]

>> {move 0}

declare xt5 in tau
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>> xt5: in tau {move 1}

declare ys5 in Rhofun xt5

>> ys5: in Rhofun(xt5) {move 1}

postulate paird tau Rhofun, xt5 ys5 : in \

tau Xx Rhofun

>> paird: [(tau_1:type),(Rhofun_1:[(ys5_2:in

>> tau_1) => (---:type)]),

>> (xt5_1:in tau_1),(ys5_1:in Rhofun_1(xt5_1))

>> => (---:in (tau_1 Xx Rhofun_1))]

>> {move 0}

declare zp5 in tau Xx Rhofun

>> zp5: in (tau Xx Rhofun) {move 1}

postulate Pi1 tau Rhofun, zp5 : in tau

>> Pi1: [(tau_1:type),(Rhofun_1:[(ys5_2:in tau_1)

>> => (---:type)]),

>> (zp5_1:in (tau_1 Xx Rhofun_1)) => (---:

>> in tau_1)]

>> {move 0}
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postulate Pi2 tau Rhofun, zp5 : in Rhofun \

(Pi1 tau Rhofun, zp5)

>> Pi2: [(tau_1:type),(Rhofun_1:[(ys5_2:in tau_1)

>> => (---:type)]),

>> (zp5_1:in (tau_1 Xx Rhofun_1)) => (---:

>> in Rhofun_1(Pi1(tau_1,Rhofun_1,zp5_1)))]

>> {move 0}

postulate Xxexact tau Rhofun, zp5 : that \

(tau Xx Rhofun) eqt zp5, paird tau Rhofun, \

(Pi1 tau Rhofun, zp5) (Pi2 tau Rhofun, zp5)

>> Xxexact: [(tau_1:type),(Rhofun_1:[(ys5_2:

>> in tau_1) => (---:type)]),

>> (zp5_1:in (tau_1 Xx Rhofun_1)) => (---:

>> that eqt((tau_1 Xx Rhofun_1),zp5_1,paird(tau_1,

>> Rhofun_1,Pi1(tau_1,Rhofun_1,zp5_1),Pi2(tau_1,

>> Rhofun_1,zp5_1))))]

>> {move 0}

% dependent construction type constructor

postulate =>> tau Rhofun : type

>> =>>: [(tau_1:type),(Rhofun_1:[(ys5_2:in tau_1)

>> => (---:type)])

>> => (---:type)]

>> {move 0}

open
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declare var in tau

>> var: in tau {move 2}

postulate lambdabodyd var : in Rhofun \

var

>> lambdabodyd: [(var_1:in tau) => (---:in

>> Rhofun(var_1))]

>> {move 1}

close

postulate Lambdad tau Rhofun, lambdabodyd \

: in tau =>> Rhofun

>> Lambdad: [(tau_1:type),(Rhofun_1:[(ys5_2:

>> in tau_1) => (---:type)]),

>> (lambdabodyd_1:[(var_3:in tau_1) => (---:

>> in Rhofun_1(var_3))])

>> => (---:in (tau_1 =>> Rhofun_1))]

>> {move 0}

declare Fd in tau =>> Rhofun

>> Fd: in (tau =>> Rhofun) {move 1}

declare Gd in tau =>> Rhofun
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>> Gd: in (tau =>> Rhofun) {move 1}

declare xt6 in tau

>> xt6: in tau {move 1}

postulate Applyd tau Rhofun, Fd, xt6 : in \

Rhofun xt6

>> Applyd: [(tau_1:type),(Rhofun_1:[(ys5_2:in

>> tau_1) => (---:type)]),

>> (Fd_1:in (tau_1 =>> Rhofun_1)),(xt6_1:

>> in tau_1) => (---:in Rhofun_1(xt6_1))]

>> {move 0}

postulate Betad tau Rhofun, lambdabodyd, \

xt6 : that (Rhofun xt6) eqt Applyd \

tau Rhofun, (Lambdad tau Rhofun, lambdabodyd) \

xt6 lambdabodyd xt6

>> Betad: [(tau_1:type),(Rhofun_1:[(ys5_2:in

>> tau_1) => (---:type)]),

>> (lambdabodyd_1:[(var_3:in tau_1) => (---:

>> in Rhofun_1(var_3))]),

>> (xt6_1:in tau_1) => (---:that eqt(Rhofun_1(xt6_1),

>> Applyd(tau_1,Rhofun_1,Lambdad(tau_1,Rhofun_1,

>> lambdabodyd_1),xt6_1),lambdabodyd_1(xt6_1)))]

>> {move 0}

% There remains extensionality for arrow types
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open

declare xt7 in tau

>> xt7: in tau {move 2}

postulate samevald xt7 : that (Rhofun \

xt7) eqt (Applyd tau Rhofun, Fd xt7) \

(Applyd tau Rhofun, Gd xt7)

>> samevald: [(xt7_1:in tau) => (---:that

>> eqt(Rhofun(xt7_1),Applyd(tau,Rhofun,

>> Fd,xt7_1),Applyd(tau,Rhofun,Gd,xt7_1)))]

>> {move 1}

close

postulate Extfnd tau Rhofun, Fd Gd samevald \

: that (tau =>> Rhofun) eqt Fd Gd

>> Extfnd: [(tau_1:type),(Rhofun_1:[(ys5_2:in

>> tau_1) => (---:type)]),

>> (Fd_1:in (tau_1 =>> Rhofun_1)),(Gd_1:in

>> (tau_1 =>> Rhofun_1)),(samevald_1:[(xt7_3:

>> in tau_1) => (---:that eqt(Rhofun_1(xt7_3),

>> Applyd(tau_1,Rhofun_1,Fd_1,xt7_3),Applyd(tau_1,

>> Rhofun_1,Gd_1,xt7_3)))])

>> => (---:that eqt((tau_1 =>> Rhofun_1),

>> Fd_1,Gd_1))]

>> {move 0}

%% further remarks about internalization: Pow One
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%% implements prop. Then all the propositional operations

%% correspond to type constructors just given, with all types

% that p actually being identified with either One or Empty.

postulate Empty : type

>> Empty: type {move 0}

declare xnot in Empty

>> xnot: in Empty {move 1}

postulate notthere xnot : that ??

>> notthere: [(xnot_1:in Empty) => (---:that

>> ??)]

>> {move 0}

%% this means that the entire logical framework can

%% be internalized, at least in its classical version:

%% the full type system of construction sorts

% can be studied internally to Lestrade.
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